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Ozone Pollution health & ecosystem effects

» Tropospheric ozone (O3) is formed by photochemical reactions involving
sunlight and precursor pollutants, including volatile organic compounds
(VOC:s), nitrogen oxides (NOX), and carbon monoxide (CO).

* In the troposphere, O3 acts as a powerful oxidizing agent, which can
harm living organisms and materials.

» Short-term exposure to elevated O3 concentrations leads to
respiratory and cardiovascular effects and increased mortality

« Long-term exposure to elevated O3 concentrations leads to reduced
vegetation growth, productivity, and yield and quality of agricultural
Crops

U.S. EPA. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Final Report, Feb 2013). U.S.
Environmental Protection Agency, Washington, DC, EPA/600/R-10/076F, 2013.


http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=511347
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» Tropospheric ozone (O3) is formed by photochemical reactions involving
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» Short-termexposure to elevated O3 concentrations leads to
respiratory and cardioyascular effects ang/'total mortality

« Long-term exposureg to elevated O3 concentrations leads to reduced
vegetation growth, productivity, and/yield and quality of agricultural
Crops

Tropospheric Formaldehyde (HCHO, a VOC), Nitrogen Dioxide (NO2,
part of NOx), CO and O3 columns can all be observed from Satellites

U.S. EPA. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Final Report, Feb 2013). U.S.
Environmental Protection Agency, Washington, DC, EPA/600/R-10/076F, 2013.



http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=511347

Background: National Trends in Nitrogen Dioxide (NO2) Levels
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Wisconsin emissions are declining and ozone Is improving
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But there are still coastal sites which are still above the new

ozone standard (70ppbv)

Anticipated new non-
attainment areas with
new, lower ozone
standard and persistent
exceedances of the old
(2008) ozone standard.

Impact of high ozone on
public health in high
density urban areas
(Chicago, Milwaukee,
Detroit, Windsor).

Also, these areas serve
as large emissions
sources.
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Figure 1. Ground sites hosting measurements for LMOS 2017

2017 Lake Michigan Ozone Study White Paper: http://www.ladco.org/
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During May and June 2017, federal and state agencies, universities, and other
partners measured air quality over Lake Michigan.
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During May and June 2017, federal and state agencies, universities, and other
partners measured air quality over Lake Michigan.
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Objectives:

» Improved ozone forecasts for the
region, which states and EPA use
to meet state and federal Clean
Air Act requirements.

» Better understanding of the
lakeshore gradient in ozone
concentrations, which could
influence how EPA addresses
future regional ozone issues.

* Improved knowledge of how
emissions influence ozone
formation in the region.




_akeshore ozone during LMOS 2017 June 02, 2017 MDAS
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Lake Michigan and Ozone Formation

Land breeze blows ozone
precursor compounds from
rush hour over lake.

The boundary layer height is
low due to cold water chilling
the air above.

The pollutants are
concentrated near the surface
where ozone forms.

An afternoon lake breeze
transports the ozone back onto
land.
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LMOS 2017 SSEC SPARC Remote Sensing Measurements: June 02, 2017
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Temp and watervapor measurements from Atmospheric Emitted Radiance Interferometer
(AERI), aerosol backscatter measurements from the High Spectral Resolution LIDAR
(HSRL), and Doppler Lidar wind measurements.

Provided by Tim Wagner (UW-Madison SSEC)



LMOS 2017 SSEC SPARC Remote Sensing Measurements: June 02, 2017
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(AERI), aerosol backscatter measurements from the High Spectral Resolution LIDAR
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LMOS 2017 SSEC SPARC Remote Sensing Measurements: June 02, 2017
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LMOS 2017 SSEC SPARC Remote Sensing Measurements: June 02, 2017
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Temp and watervapor measurements from Atmospheric Emitted Radiance Interferometer
(AERI), aerosol backscatter measurements from the High Spectral Resolution LIDAR
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LMOS 2017 SSEC SPARC Remote Sensing Measurements: June 02, 2017
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LMOS 2017 SSEC SPARC Remote Sensing Measurements: June 02, 2017
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National Weather Service NAM-CMAQ ozone forecasts during LMOS 2017
(http://airquality.weather.gov/)
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National Weather Service NAM-CMAQ ozone forecasts during LMOS 2017
(http://airquality.weather.qov/)

ORs NAM-GMAQ
NAM-CMAQ underestimates the frequency of
the prevailing southerly winds and overestimates e Wl
the frequency of westerly winds and wind speeds
at Sheboygan, KA.
Fal gﬁj ) >S ) s
Wind Speed (m/s) Sheboygan KA
#g;;oggsz;‘z s T

-
oL )
Aberdeen

May 22 through June 22, 2017

i
Sinu:-:o alls
OIR‘S NAM-%MAQ
] ~ .
g )
o

30 w E w
Hastings
oy
Maximum 1Hr Dzone(PPB) Ending Fri Jun 02 2017 11PM EDT
@ (Sat Jun 03 2017 0322
V Natiocnal Digital Guidance Database & - .
05z model run Graphic created-Jun 02 6iddAM EOT . s s §
Ozone bv) Sheboygan KA
2006663 54050681 00000 SN

6.80115% 28.4427% 42.2481% 11.2871% .22100% Obs
9.36563% 79.5070% 10.0801% 1.04728% 0.00000% Mod

The North American Model (NAM) meteorology drives the Environmental Protection
Agency’s (EPA) Community Multiscale Air Quality Model (CMAQ)
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National Weather Service NAM-CMAQ ozone forecasts during LMOS 2017
(http://airquality.weather.gov/)
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LMOS 2017 Aircraft Measurements

NASA GeoTASO remote sensing Flights Scientific Aviation insitu sampling Flights
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GeoTASO (Geostationary Trace gas and Aerosol Sensor Optimization) is an airborne
hyperspectral mapping instrument that is being used as an airborne testbed for future
high-resolution trace-gas observations from geostationary sensors such as TEMPO

The Electric Power Research Institute (EPRI) provided funding for Scientific Aviation
Flights during LMOS



Coastal Ozone Exceedance Day
LMOS SA Flight 20170602_R0

LMOS SA Flight 20170602_R0
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GeoTASO NOZ Slant Column June 19, 2017

LMOS Chicago Emissions Mapping
(weekday morning rush hour)

NAM-CMAQ significantly
overestimates observed NO2 column
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Aura Ozone Monitoring Instrument (OMI) Tropospheric
NO2 column Data Assimilation

With Monica Harkey (UW-Madison SAGE), Allen Lenzen (UW-Madison SSEC)

OMI Tropospheric NO2 column during LMOS 2017

AN b

NOx emissions adjustments (AE)
are constrained using OMI
tropospheric NO2 column analysis
iIncrements (AQ)

B accounts for the sensitivity of the
NO2 column to changes in NOXx
emissions following Lamsal et al
2011.

Lamsal, L. N., et al. (2011), Application of satellite observations for timely updates to global anthropogenic NOx emission inventories,
Geophys. Res. Lett., 38, L05810, doi:10.1029/2010GL046476.



Aura Ozone Monitoring Instrument (OMI) Tropospheric
NO2 column Data Assimilation

With Monica Harkey (UW-Madison SAGE), Allen Lenzen (UW-Madison SSEC)

Change in NAM-CMAQ NOx emissions LMOS 2017
(Adjusted with OMI Analysis Increment - Control)

Assimilation of OMI NO2 results in
small (~4%) reductions in NOx
emissions over Chicago

Lamsal, L. N., et al. (2011), Application of satellite observations for timely updates to global anthropogenic NOx emission inventories,
Geophys. Res. Lett., 38, L05810, doi:10.1029/2010GL046476.
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In-situ measurements of volatile organic compounds at Zion by high-resolution proton-
transfer time-of-flight mass spectrometry
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Zion VOC measurements show significantly higher biogenic contributions during the second half of
LMOS 2017 — spring leaf out has a strong influence on biogenic VOC emissions

Provided by Dylan Millet (University of Minnesota)



Satellite True Color Image Satellite Land Surface Retrieval
VIIRS May 07, 2017 MODIS 8-day average LAI




Satellite True Color Image Satellite Land Surface Retrieval
VIIRS June 07, 2017 MODIS 8-day average LAI
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Trends of daytime average ozone, summer Data extracted on: 2016-10-21
daytime avg ozone, 2000-2014: 2613 all sites

0.05 < p <= 0.10
— 0.10 < p < 0.34
p>=034

03 rate -05
of change 0
ppb yr ! =0

Chang, K-L, et al 2017 Regional trend analysis of surface ozone observations from monitoring networks in eastern North America,
Europe and East Asia. Elem Sci Anth, 5: 50,https://doi.org/10.1525/elementa.243



Trends of daytime average ozone, summer Data extracted on: 2016-10-21
daytime avg ozone, 2000-2014: 2613 all sites
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Chang, K-L, et al 2017 Regional trend analysis of surface ozone observations from monitoring networks in eastern North America,
Europe and East Asia. Elem Sci Anth, 5: 50,https://doi.org/10.1525/elementa.243



Maximum Daily 8 hour Average (MDAS8) Ozone Trends
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Chang, K-L, et al 2017 Regional trend analysis of surface ozone observations from monitoring networks in eastern North America,
Europe and East Asia. Elem Sci Anth, 5: 50,https://doi.org/10.1525/elementa.243



RAQMS Aura Chemical Reanalysis

Project Summary

» Utilize the Real-time Air Quality Modeling System (RAQMS) to conduct a
multi-year global chemical and aerosol reanalysis using NASA Aura and A-
Train measurements.

» Follows the path lead by the European Center for Medium Range Weather
Forecasting (ECMWEF) for development of operational air quality forecasting.

* Provides a comprehensive chemical and aerosol analyses for assessing global air
guality and for providing lateral boundary conditions for regional air quality
management activities.

Assimilated Satellite Data

Terra/Aqua MODIS Aerosol Optical Depth and Fire Detection
Aqua AIRS Carbon Monoxide Retrieval 3
Aura MLS and OMI ozone Retrievals Chemietry 5 crmt®
Aura OMI Tropospheric NO2 Retrievals

Funded by the NASA Health and Air Quality Applications Program



Satellite Retrievals g Global Assimilation Regional Prediction Validation

Bealtime Air Quality Modeling System >,

RAQMS Description

1. Online global chemical and aerosol assimilation/ forecasting system
2. UW-Madison hybrid 6—n coordinate model (UW-Hybrid) dynamical core

3. Unified stratosphere/troposphere chemical prediction scheme (LaRC-Combo)
developed at NASA LaRC

4. Aerosol prediction scheme (GOCART) developed by Mian Chin (NASA GSFC).

http://ragms-ops.ssec.wisc.edu/index.php

RAQMS was developed by NASA Langley Research Center and the UW- Madison SSEC
and has provided real-time global air quality forecasts since January, 2010
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QMTotalCoumnOSZonalMean AnaIyZEd VS OMI

N R Total Column O3

Latitude
o

Yo biennial oscillation (QBO, Camp
. OMITotal Column 03 Zonal Mean et al, 2003), Antarctic ozone hole,

T
/1

L v TR YW " | and unprecedented Arctic ozone
PRV AV LN loss in 2011 (Manney et al, 2011)

Provided by Margaret Bruckner
(UW-Madison AOS)
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Geophys. Res., 108(D20), 4643, doi:10.1029/2001JD001504, 2003.

Unprecedented Arctic ozone loss in. Nature, 478(7370), 469-475.
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Analyzed Tropospheric
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HIPPO-1 January 2009 O3 Verification
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Aura Reanalysis Tropospherc Ozone Column Anomoly (DU)
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RAQMS Total Column Ozone (TCO) and Total Precipitable Water (TPW) May 2012-2014
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Baylon, P. M., et al, 2016, Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone in the Western U.S., Environ.
Sci. Technol. 2016, 50, 2994-3001, DOI: 10.1021/acs.est.6b00219



Comparison with Surface Ozone at Mount Bachelor Observatory (MBO), May 2012

TCO,, May 2012
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Baylon, P. M., et al, 2016, Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone in the Western U.S., Environ.
Sci. Technol. 2016, 50, 2994-3001, DOI: 10.1021/acs.est.6b00219



1)

2)

3)

Future directions:

Currently preparing report for Lake Michigan Air Directors Consortium (LADCO)
summarizing LMOS 2017 preliminary findings and recommendations for State
Implementation Plan modeling

Supported by the NOAA Research Transition Acceleration Program (RTAP) to
implement a reduced version of RAQMS chemistry into the Next Generation Global
Prediction System (NGGPS)

Plan to extend the RAQMS Aura Reanalysis beyond 2016 using trace gas and aerosol
retrievals from Suomi National Polar-orbiting Partnership (S-NPP) and NOAA-20

S-NPP CrlS Full Spectral Resolution CO RAQMS CO

Mid-tropospheric (200-700mb) Cross-track Infrared Sounder (CrlS) CO and RAQMS (ppbv) on March 21, 2015



Outline:

1) Background
« Pollution health & ecosystem effects
« Regional trends
2) Regional Air Quality
« 2017 Lake Michigan Ozone Study — “The Wisconsin Idea”
3) Global Air Quality
* Global Trends
« Aura Chemical Reanalysis
4) Vision: SSEC — Opportunities and Challenges



Why I’m applying for the SSEC Director position

L3

"1 | have a strong commitment to the continued success of SSEC as

I/ an international leader in development and utilization of space
i based Earth observations

» SSEC has played a critical role in my ability to
accomplish my research goals throughout my career

- x‘
\/ ' > | feel a sense of responsibility to contribute to the
e el ¢ } continued success in a leadership role
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SSEC Research Support

SSEC

Technical Computing Engineering Satellite Data Services

Three cornerstones of SSEC research: advancing satellite instrument observing
capabilities, acquiring and validating the associated measurements, and deriving useful

products and information.



SSEC Large Programs

SSEC

Atmosphere Science Ice Drilling Design and Cooperative Institute for
Investigator-led Processing Operations (IDDO) Meteorological Satellite
Systems (SIPS) Studies (CIMSS)




SSEC Science Team
Participation

SSEC

S-NPP Hazardous Wx Testbed
AIRS Proving Ground
MODIS

GOES-R AWG
JPSS
RTAP

FRAPPE
PECAN
TORERO

Applied Sciences
GPM
CloudSat
OCO-2



Opportunities: SSEC NASA Earth Venture participation

The Tropospheric Emissions: Monitoring of Pollution (TEMPO) measure air
pollution of North America hourly and at high spatial resolution. TEMPO
observations are from the geostationary vantage point, flying on a geostationary
commercial communications host spacecraft. (P1: Kelly Chance, Smithsonian
Astrophysical Observatory) (Brad Pierce, Co-l, Air Quality forecasting and data
assimilation)

The Time-Resolved Observations of Precipitation structure and storm Intensity with
a Constellation of Smallsats (TROPICS) mission will measure environmental and
inner-core conditions for tropical cyclones (TCs) at an unprecedented combination of
horizontal and temporal resolution (PI, William Blackwell, MIT Lincoln Laboratory)
(Chris Velden, Co-1, SSEC responsible for ground system)

The Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) will fly a pair
of small CubeSat satellites to probe a little-studied portion of the radiant energy
emitted by Earth for clues about Arctic warming, sea ice loss, and ice-sheet melting.
(PI: Tristan L’Ecuyer of the University of Wisconsin, Madison)

These Earth Venture missions were in response to the 2007 Decadal Survey



Challenges: Supporting SSEC engineering infrastructure to support SSEC
and campus research.

Challenges: Increasing the number of Pl level staff and external UW
collaborations at SSEC.



Challenges: Supporting SSEC engineering infrastructure to support SSEC
and campus research.

Strengthen SSEC’s collaboration with the UW-Madison Physical Sciences Lab (PSL) to
provide more sustained funding for SSEC engineering staff.

Challenges: Increasing the number of Pl level staff and external UW
collaborations at SSEC.



Challenges: Supporting SSEC engineering infrastructure to support SSEC
and campus research.

Strengthen SSEC’s collaboration with the UW-Madison Physical Sciences Lab (PSL) to
provide more sustained funding for SSEC engineering staff.

Pursue NASA and/or NOAA Incubation funding to support the development of expanded
capabilities for the S-HIS, including short wave infrared channels for retrieving methane,
carbon monoxide, and carbon dioxide

Challenges: Increasing the number of Pl level staff and external UW
collaborations at SSEC.



Challenges: Supporting SSEC engineering infrastructure to support SSEC
and campus research.

Strengthen SSEC’s collaboration with the UW-Madison Physical Sciences Lab (PSL) to
provide more sustained funding for SSEC engineering staff.

Pursue NASA and/or NOAA Incubation funding to support the development of expanded
capabilities for the S-HIS, including short wave infrared channels for retrieving methane,
carbon monoxide, and carbon dioxide

Challenges: Increasing the number of Pl level staff and external UW
collaborations at SSEC.

Continue collaboration with Astronomy and Physics Departments, and strengthen
collaboration with other departments through programs such as UW2020, Data Science
Initiative (Institute for Foundations of Data Science)



Path Forward: » Develop a coordinated plan to target Small and Medium
i missions recommended under the 2017 Decadal Survey for
Earth Observation from Space

1 > Increase the focus on data assimilation and NWP to capture
| funding opportunities under the Weather Research and
Forecasting Innovation Act

| > Provide stronger support for post-doctoral recruitment efforts
J and pursue more interdisciplinary funding opportunities with
$ UW faculty.
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Extra Slides



Chicago Emission Mapping Weekend/Weekday

Sunday, June 18t 8-10 LDT Monday, June 19t 8-10 LDT
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GeoTASO (Geostationary Trace gas and Aerosol Sensor Optimization) is an airborne
hyperspectral mapping instrument built by Ball Aerospace (Leitch et al., 2014) and is being
used as an airborne testbed for future high-resolution trace-gas observations from
geostationary sensors such as TEMPO (Analysis by Laura Judd, NASA/LaRC)



LLake Michigan Ozone Study (LMOS) 2017
Campaign Study Period May 22- June 22, 2017

Frequency of Wisconsin lakeshore MDAS >70 pphb NOAA GLSEA-2 Lake Michigan SST
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Primary science objectives focusing on characterizing the recirculation, aging, and mixing of
the Chicago and Milwaukee urban plumes as they move over Lake Michigan and their
impact on surface ozone.

Lake Michigan Ozone Study White Paper: http://www.ladco.org/



Atmos. Chem. Phys., 17, 15151-15165, 2017 Atmospheric
https://doi.org/10.5194/acp-17-15151-2017 .

© Author(s) 2017. This work is distributed under Chemi s_try
the Creative Commons Attribution 3.0 License. and P hys ICS

Gradients of column CO; across North America from the NOAA
Global Greenhouse Gas Reference Network

Xin Lan'2, Pieter Tans', Colm Sweeney'-2, Arlyn Andrews', Andrew Jacobson'2, Molly Crotwell'2,
Edward Dlugokencky', Jonathan Kofler'-, Patricia Lang', Kirk Thoning', and Sonja Wolter !

INational Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder, CO, USA
2Uni\/’crsit)/' of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA

“In wintertime, monotonic decrease of CO2 with altitude can be observed from
all regions, in which high PBL CO2 is mainly driven by surface emissions and
reduced vertical mixing (Denning et al., 1999; Stephens et al., 2007)”

” Surface CO2 decreases dramatically in the growing season in those regions
influenced by high plant activity, such as the NM and MW regions.”
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Altitude (km)

(Park Falls, Wisconsin (LEF) @ (Park Falls, Wisconsin (LEF) @

May 30, 2017 11-12 LST June 27, 2017 11-12 LST
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NOAA/ESRL Park Falls Tall Tower Aircraft measurements during LMOS
* High CH4 within PBL and low CH4 aloft
« High CO2 within PBL on May 30, 2017 (CO2/CH4 positively correlated)
« CO2 draw down within PBL on June 27, 2017 (CO2/CH4 anti-correlated)

LMOS occurred during leaf out and transition to summer-time CO?2
drawdown — also strong influence on biogenic VOC emissions



Coastal Ozone Exceedance Day
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RAQMS TCO versus TPW May 2012-2014
(180W-110W, 35N-50N)
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Baylon, P. M., et al, 2016, Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone in the Western U.S., Environ.
Sci. Technol. 2016, 50, 2994-3001, DOI: 10.1021/acs.est.6b00219



Impacts of East Asian Emissions — May 2010

May 2010 RAQMS O3 (400mb-SFC)
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May 2010 RAQMS dO3 East Asian Emissions
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Impact of East Asian ozone production
extends into North America with potential

US Air Quality impacts

Du

Huang, M et al, 2017 Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-
model study, Atmos. Chem. Phys., 17, 5721-5750, 2017, doi:10.5194/acp-17-5721-2017



Summary of measurements made during the
LMOS 2017 field campaign

Location Measurement* Research Institution*

Spaceport Sheboygan Remote sensing of meteorology (SPARC Trailer) UW-Madison -SSEC
In situ measurements of pollutants U.S. EPA ORD

Zion, IL Remote sensing of meteorology (Sodar/MW Univ. Northern lowa
Radiometer)
Detailed in situ chemical measurements Univ. lowa, UW-Madison,
Univ. Minnesota
Routine measurements of ozone Illinois EPA
Remote sensing of pollutants and boundary layer U.S. EPA ORD
height

Sheboygan transect In situ measurements of ozone at four locations U.S. EPA ORD
Airborne Platforms

Lakeshore region Airborne remote sensing of NO, (GeoTASO) NASA
Airborne remote sensing of clouds (AirHARP) Univ. Maryland, Baltimore
County

Airborne in situ profiling of pollutants and meteorology  Scientific Aviation (and
NOAA?)

Shipboard Platform

Lake Michigan In situ measurements of pollutants U.S. EPA ORD
Remote sensing of pollutants and boundary later height U.S. EPA ORD
Mobile Platforms

Northeast IL and Southeast WI In situ measurements of pollutants (GMAP) U.S. EPA Region 5
Grafton to Sheboygan In situ measurements of ozone and meteorology UW-Eau Claire

GeoTASO = Geostationary Trace gas and Aerosol Sensor Optimization instrument

AIrHARP = Airborne Hyper Angular Rainbow Polarimeter

GMAP = Geospatial Mapping of Pollutants

+ These measurements were made at Spaceport Sheboygan, Zion, two Wisconsin DNR monitoring locations (Grafton and Milwaukee
SER) and one lllinois EPA monitoring location (Schiller Park).



