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[1] In recent years, sparse, surface-based air quality monitoring has been improved by
using wide-swath, satellite-derived aerosol products. However, satellites are sensitive to
the entire aerosol column, not only the aerosol near the surface that impacts human health.
In part 1 of this series, we used multiple regression to demonstrate how inclusion of
meteorological analyses can help constrain the surface level proportion of the aerosol
profile and improve the estimate of surface PM2.5. Here, instead of multiple regression
technique, we describe an artificial neural network (ANN) framework that reduces the
uncertainty of surface PM estimation from satellite data. We use 3 years of MODIS
aerosol optical thickness data at 0.55 mm and meteorological analyses from the rapid
update cycle to estimate surface level PM2.5 over the southeast United States (EPA
region 4). As compared to regression coefficients obtained through simple correlation
(R = 0.60) or multiple regression (R = 0.68) techniques, the ANN derives hourly
PM2.5 data that compare with observations with R = 0.74. For estimating daily mean
PM2.5, the ANN techniques results in correlation of R = 0.78. Although the degree of
improvement varies over different sites and seasons, this study demonstrates the potential
for using ANN for operational air quality monitoring.

Citation: Gupta, P., and S. A. Christopher (2009), Particulate matter air quality assessment using integrated surface, satellite, and

meteorological products: 2. A neural network approach, J. Geophys. Res., 114, D20205, doi:10.1029/2008JD011497.

1. Introduction

[2] Satellite remote sensing of aerosols can be used to
assess surface level PM2.5 (PM2.5 or PM2.5, aerodynamic
diameter less than 2.5 mm) mass concentration at high
spatial and temporal resolutions [Al-Saadi et al., 2005].
Fraser et al. [1984] estimated the columnar sulfate concen-
tration (gm�2) over a few locations on the east coast of the
United States using Aerosol Optical Thickness (AOT)
retrievals from the Visible Infrared Spin-Scan Radiometer
(VISSR) onboard Geostationary Operational Environmental
Satellite (GOES). More recently, a study by Wang and
Christopher [2003] showed that under certain conditions,
PM2.5 mass measured at the surface and the 550 nm AOT
from the Moderate Resolution Imaging SpectroRadiometer
(MODIS) are well correlated (R > 0.7). Although PM2.5
and AOT have different units, they are related to each other
through the following equation:

AOT ¼ PM25 H f RHð Þ 3Qext;dry

4rreff
¼ PM2:5 H S ð1Þ

where f (RH) is the ratio of ambient and dry extinction
coefficients, r is aerosol mass density (g m�3), H is the
boundary layer height, Qext,dry is the Mie extinction
efficiency, and reff is the particle effective radius. S is the
specific extinction efficiency (m2 g�1) of the aerosol at
ambient relative humidity (RH) [Koelemeijer et al., 2006].
Therefore, the relationship between AOD and PM2.5 is
optimal for cloud free skies with a well-mixed boundary
layer height. Since the study by Wang and Christopher
[2003], several papers have been published that have
utilized AOT as a surrogate for estimating PM2.5 mass
(Table 1). Table 1 shows that most of these studies [e.g.,
Chu et al., 2003; Engel-Cox et al., 2006; Hutchison et al.,
2005; Al-Saadi et al., 2005] were largely focused on the
United States and used MODIS satellite data to estimate
surface level PM2.5 mass concentration. The MODIS was
designed specifically for aerosol studies with good calibra-
tion and state of the art aerosol retrieval algorithms to
convert measured radiances to AOT. Other studies [e.g.,
Gupta et al., 2006, 2007; van Donkelaar et al., 2006;
Koelemeijer et al., 2006; Kacenelenbogen et al., 2006;
Kumar et al., 2007, 2008] also analyzed the MODIS AOT
over other parts of the world such as India, Hong Kong,
Australia, and Europe. MISR on board Terra also provides
reliable AOT retrievals [Diner et al., 2001] and this data has
been also used to characterize PM2.5 mass over the selected
regions in the United States [e.g., Liu et al., 2004].
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However, due to its narrow swath width (about 360 km),
MISR global coverage is only achieved on a weekly basis
and is not suitable for studies that require daily assessment
of PM2.5. Recently, AOT data from geostationary satellites
at higher temporal resolutions have also been used for
estimating near-surface PM2.5 mass [Paciorek et al., 2008].
[3] These studies concluded that the satellite-derived

AOT is an important parameter to define air quality over
large spatial domains and to track and monitor aerosols
sources and transport. Most of these studies are based on
correlating AOT and PM2.5 with simple linear regressions
[e.g., Gupta and Christopher, 2009]. The MODIS derived
AOT is a measure of column aerosol loading and cannot be
used alone to derive PM2.5 mass concentration, which is an
indicator of the mass of the dry PM2.5 near the surface.
Meteorological factors such as surface temperature (Ts),
relative humidity (RH), wind speed (WS), wind direction
(WD), and variations in sunlight due to clouds are important
among other parameters, which affect the relationship
between the two measures of pollution. Although the
AOT-PM2.5 relationships work well in some regions, a
major issue is the lack of vertical information as AOT is a
columnar quantity whereas the PM2.5 is a surface measure-
ment [Engel-Cox et al., 2006]. Although ground and space-
borne lidars are a good solution for obtaining this vertical
information, they are not readily available on a daily basis
and therefore using meteorological information such as
mixing layer heights could be a viable solution [Gupta
and Christopher, 2009]. Assuming most of the aerosols are
in the well-mixed boundary layer this information can be
used to refine the AOD-PM2.5 relationships. Hoff and
Christopher [2009] provide a thorough review of the use
of satellite data for estimating surface level PM2.5.
[4] To forecast air quality near the surface, modeling

systems are employed that include observations including
satellite and ground-based data. These models simulate the
emission, transport, diffusion, transformation, and removal
of air pollution [e.g., Mathur et al., 2008]. However, daily
air quality forecasting based on PM2.5 mass using numer-
ical models is not mature and remains under development
[e.g., Kondragunta et al., 2008]. Uncertainties exist because
the sources of pollutants are not well defined and also due to
gaps in our knowledge of physical, dynamical and chemical
processes in the atmosphere. New approaches and system-
atic modeling are needed to estimate the air quality in the
United States and around the world, especially in areas that
experience poor air quality that have limited or no ground
measurements.
[5] Satellite data have been used to form regression

models [Gupta and Christopher, 2009], but regression
equations tend to predict the mean better than the episodic
events and they will likely under predict the high concen-
trations and over predict the low concentrations [Dye et al.,
1998;Hubbard and Cobourn, 1998; Ryan, 1995]. To explore
these issues, an artificial neural network (ANN) based
model was developed using satellite, ground and meteoro-
logical data sets to assess PM2.5 air quality. In this paper we
compare the results of the ANN method with the two-
variate (TVM) and multivariate methods (MVM). The TVM
and MVM are most commonly methods used to estimate
PM2.5 using satellite AOT’s (see Table 1). The TVM and
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MVM are fully described by Gupta and Christopher
[2009].

2. Artificial Neural Networks

[6] The complexity of a problem and its understanding
decides what type of modeling system is required. A full
physically based numerical model would be most suitable
for forecasting PM2.5 mass if we have the required data sets
(especially emission inventories) and a good understanding
of PM2.5 formation and removal processes. However, given
the complexity of the problem, a statistical approach is a
good compromise [Gardner and Dorling, 1998]. ANN is an
information processing archetype that was inspired by the
way biological nervous systems, such as the brain, process
information [Aleksander and Morton, 1995]. In other
words, ANN is a set of computer algorithms designed to
simulate biological neural network in terms of learning and
pattern recognition. ANN has been used in many scientific
disciplines to identify patterns and extract trends in impre-
cise and complicated nonlinear data.
[7] ANN has been used for studying various Earth

science problems including cloud detection for Polar
Regions where traditional methods that employ threshold-
ing algorithms often fail [Lee et al., 1990]. ANN has also
been used to specifically investigate forecasting pollution
levels in urban areas [Comrie, 1997; Gardner and Dorling,
1998; Ruiz-Suarez et al., 1995; Perez et al., 2000; Dorling
et al., 2003; Ordieres et al., 2005; Jiang et al., 2004; Perez
and Reyes, 2006; Chattopadhyay and Bandyopadhyay,
2007]. A study by Gardner and Dorling [1998] in London
used ANN to successfully demonstrate the prediction of
NOx and NO2 by providing meteorological inputs and
traffic flow data. Daily mean PM2.5 mass was forecasted
in El Paso (United States) and Ciudad Juarez (Mexico)
using three different types of neural networks, and two
types of models (persistence and linear regression) and
results indicated that ANN outperformed the classical
statistical models [Ordieres et al., 2005]. Perez et al.
[2000] compared ANN and classical models to forecast
hourly PM2.5 mass concentration using prior day observa-
tions in Santiago, Chile. Results from this study again
confirm that ANN performed extremely well. These studies
concluded that ANN-based modeling systems perform more
efficiently when compared to linear regression models for
particulate matter air pollution monitoring and forecasting
[Perez and Reyes, 2006].
[8] In this paper, several NN-based models (or networks)

have been developed to estimate surface level PM2.5 using
satellite and meteorological fields for various seasons and
regions over the southeastern United States. In our previous
study, we have used two-variate (TVM) and multivariate
methods (MVM) to estimate the surface level PM2.5 mass
concentration [Gupta and Christopher, 2009]. The MVM
results show an improvement in PM2.5 estimation accuracy
(13 and 17% for hourly and daily average, respectively) due
to the use of meteorology. To our knowledge this is among
the first efforts that utilize aerosol information from satellite
coupled with surface meteorology to train an ANN system
to estimate hourly and 24 h PM2.5 mass concentrations.
[9] In the past, many studies have shown the application

of multilayer perceptron (MLP) type of neural network to

model air quality and other atmospheric problems. Multi-
layer perceptron is a feed-forward neural network architec-
ture, which shows the directionality of information
processing inside the network. A neural network has the
capability of learning a particular skill (such as pattern
reorganization and classification) rather than memorizing
the training data. For example, training data in air quality
applications is usually composed of local meteorological
conditions, climatological value of pollution level, along
with space and time information that determines the pollu-
tion. A trained NN system behaves in a more generalized
manner. This is one of the important advantages over linear
regression models [Ordieres et al., 2005]. The MLP does
not make any assumptions about the data distributions,
which is common in other type of statistical methods
[Schalkoff, 1992] that employ regression methods.
[10] Common neural networks architecture have three

layers of neurons: input layer, hidden layer and output
layer. Each one of these layers can have one or more than
one nodes or neurons. Figure 1 provides a schematic of such
a network used in the current study with eight nodes (i.e.,
input parameters) in input layer and two nodes (i.e., PM2.5
for hourly and 24 h average) in the output layer. The input
layer consists of eight nodes; namely, latitude, longitude,
month, AOT, wind speed (WS), relative humidity (RH),
Height of the Planetary Boundary Layer (HPBL), and
surface temperature (TMP). The input layers are connected
to the hidden and output layers by a linear combination of
functions. Layers between the input layer and output layer
are usually called hidden layers and work toward minimiz-
ing the error by modifying weights through the training
process. Nodes or neurons of a neural network are con-
nected by output signal and weights, which are modified by
a simple nonlinear transfer or activation function [Gardner
and Dorling, 1998]. The MLP needs to be trained using
training data sets to predict/estimate outputs. The most com-
mon training algorithm is back propagation [Rumelhart et al.,
1986; Hertz et al., 1991] where input data are repeatedly
sent to a neural network. During each pass of data, the
neural network calculates the output (in this case PM2.5
mass concentration), which is compared with the desired
output (actual PM2.5 measurement) and an error is esti-
mated. This error is then sent back to the network, which
forces the network to adjust its weight such that the error
decreases with each iteration until the desired outcome is
achieved. Training is therefore the process of finding
optimal value of weights for minimizing error functions.
Once the optimal weights are obtained, the process of train-
ing is completed and the network is ready to estimate/
forecast with a new input vector. A step by step description
of the training process can be found in the work of Gardner
and Dorling [1998], and further theoretical details can be
found in the work of Bishop [1995].

3. Data Sets and Network Training

[11] The data sets are discussed in detailed in part 1 of
this series [i.e., Gupta and Christopher, 2009] and only a
brief description is given here for sake of completeness.
Three years of hourly PM2.5 mass concentrations (mgm�3)
from EPA AirNow network, hourly meteorological fields
from rapid update cycle (RUC) reanalysis at 20 km spatial
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resolution, and instantaneous retrievals of AOT at 0.55 mm
from MODIS-Terra at 10 � 10 km grid resolution were
collected. All three data sets are first collocated in space
and time using the methods described by Gupta and
Christopher [2008a]. Validation exercises [Remer et al.,
2005; Levy et al., 2007] have shown that MODIS retrieves
AOT over land with a 10–20% uncertainty when compared
with ground observations. PM2.5 mass concentration meas-
urements are made using a Tapered-Element Oscillating
Microbalance (TEOM) instrument with an accuracy of
±1.5 mgm�3 for hourly averages. However, due to the
volatilization of ammonium nitrate and organic carbon,
the TEOM PM2.5 mass may be underestimated [Grover et
al., 2005]. PM2.5 data were collected from 85 ground
stations in the southeastern United States. Hourly air tem-
peratures at 2 m (TMP), surface relative humidity (RH),
wind speed at 10 m (WS), and HPBL at 20 � 20 km2 spatial
resolution from the RUC model are used. Intercomparison
studies of RUC analysis with METAR (aviation weather
reports) provides a RMS difference of 1.5 ms�1 and <1.5 K
in wind speed and temperature and varies as a function of
the season [Benjamin et al., 2004].
[12] This integrated data set, which includes surface,

satellite and meteorological information, contains 32,834
samples are used to train, test, and validate the neural
network system. Several combinations of neural networks
have been trained for different seasons and geographical
locations. To construct each of these NN models, the data
are divided randomly into three subsets including training
(50%), testing (10%), and validation (40%). Training data
are used to train the MLP neural networks with multiple
hidden layers. Testing data sets are used by neural network

to test the performance of learning process after each
iteration of the training. Validation data sets were used to
perform final validation of estimated PM2.5 values from
trained network. Twenty different combinations of NN
(models) were trained and the five best were retained for
the analysis. The final output and error analysis is produced
using an ensemble of these five models. These five models
vary in terms of activation functions (see section 2) asso-
ciated with input layer and hidden layers and on the number
of hidden layers used. The number of hidden layers used in
the model varies between 2 and 10 where error optimization
is performed using sum of square of residual error function.
The use of increased number of hidden layers makes the
network size large, more difficult to train, and thereby
making it slower to operate while increasing the chances
of over training. However, at the same time these networks
perform better compared to networks with smaller number
of hidden layers [Bishop, 1995]. Overtraining refers to the
reduction in generalization ability of trained network that
can occur as networks are trained. In simpler words, over-
training occurs when a network has learned not only the
basic relationship associated with input and output data, but
also the subtle degree and even the errors specific to the
training set. If too much training occurs, the network only
memorizes the training set and loses its ability to generalize
to new data. The result is a network that performs well on
the training set but performs poorly on the validation data
and later during actual operation.
[13] Since a large number of training samples (�15,000)

are available for this study, we have allowed the number of
hidden layers to vary from 2 to 10. A combination of linear
activation functions (see section 2) are used in each of these

Figure 1. Schematic of a multilayer perceptron neural network used to integrate satellite and
meteorological fields to estimate surface level PM2.5 mass concentration.
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models. The problem of over training is handled using test
data sets, which are never used to train the network but
rather used to monitor the performance throughout the
training process. MLP uses a powerful second-order back
propagation training algorithm, which converges quickly to
solutions but requires large computer memory. The training
of NN is an iterative process where the weighted coeffi-
cients associated with each node are modified using new
data sets. After every cycle of training, test data sets were
used to check the network’s output for the desired output
(PM2.5 observation) and error function is calculated, which
is used to optimize the weights associated with input vector.
In this study we use the sum-of-square (SOS) error function,
which is given by sum of square of differences between
target (desired output) and output (actual output from net-
work) defined over the entire training data set. Equation (2)
provides the formulation of SOS:

Esos ¼
XN

i¼1
Ytari � Youtið Þ ð2Þ

where N is the number of training samples, Ytar is the target
value, and Yout is actual output values of the ith sample.

Figure 2 presents the flowchart describing entire training
process.
[14] Once the network is trained, independent validation

data sets that are not seen by the network are used to
evaluate the performance of the trained network. The
performance of the network is evaluated by calculating
absolute percentage errors (APE):

APE ¼ 100� jYest � Yobsjh i
Yobsh i ð3Þ

Yest is estimated PM2.5 mass concentration (hourly or 24 h
mean) using trained network, and Yobs is observed PM2.5
mass concentration in validation data set. The average
difference between observed and estimated value of PM2.5
mass concentration is shown by APE. Absolute percentage
error function (equation (3)) is also used to compare the
results from neural network model with those obtained
using two-variant and multivariant regression models
[Gupta and Christopher, 2009].

4. Results and Discussion

[15] The results presented here are from the ensemble of
five different ANN models that performed the best out of
the 20 models trained using training data sets. The current
NN has eight nodes (satellite and meteorological fields) in
the input layer with varying number of nodes in hidden
layer and two nodes (hourly and daily average PM2.5 mass
concentration) in the output layer. The number of hidden
layers also varies in different networks. The number of
nodes in a hidden layer is decided by evaluating the
performance of the network by analyzing the errors. Several
networks were trained as part of this study, which are
described in section 3. Results and evaluation of these
networks were performed by statistical measures including
linear correlation coefficient (R) and absolute percentage
error of estimation (APE) over all the data sets together and
as a function of different seasons. Time series of estimated
and measured PM2.5 were analyzed over several stations
for accuracy assessment as well as for intercomparisons
with TVM and MVM model outputs. The PM2.5 mass from
both training and validation data sets are shown as scatter-
plots. Separate analysis is performed for hourly and daily
average PM2.5 mass concentration since hourly data sets
may not be available in many locations and daily values are
used to define air quality standards. We also compare the
APE values obtained from NN with those obtained from
two-variate models and multivariate models described by
Gupta and Christopher [2009]. The time series of observed
and estimated PM2.5 mass concentration from the three
approaches is also provided for selected stations.

4.1. Time Series Examples of Model Outputs

[16] We evaluate the ANN over each station (total 85) by
using predicted or estimated hourly and 24 h average PM2.5
mass concentrations. Figures 3a–3c present the time series
of observed minus estimated PM2.5 mass (hourly) over
three different stations. Figures 3a–3c show the time series
of PM2.5 differences of observed and estimated with TVM
(red bars, OBS-TVM),MVM (blue open circles, OBS-MVM)
and ANN (green squares, OBS-ANN). These stations have

Figure 2. Flowchart describing training process of a
multilayer perceptron neural used for surface level particu-
late matter air quality assessment.
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been chosen to demonstrate how well (or not) the ANN
performs and how it compares with the TVM and MVM.
[17] Station number 1 (Figure 3a) is located in a coastal

area [Naples, Florida (26.3 N and 81.7 W; identify as station
number 11 in the work of Gupta and Christopher [2009].
PM2.5 data over this station is only available during a
portion of the study period and remains under good to
moderate air quality categories (1–20 mgm�3) with mean
value of 8.4 mgm�3 with a few high values (>25 mgm�3).
Also, this station shows less day to day variability in PM2.5
mass whereas MODIS AOT shows high values in summer
and low values during the winter months. The three meth-

ods used to estimate PM2.5 produced mean value about the
same as observed values, but underestimated them during a
few high PM2.5 cases. This station experienced average to
low boundary layer height (0.7 km) with highest (1.3 km)
values in summer months. The ANN shows no improve-
ment over other TVM and MVM while estimating PM2.5
mass concentration over this site. The correlation coefficient
increased from 0.49 for TVM to 0.50 for ANN whereas
percentage error of estimation remained the same (39%).
MVM, on the other hand, shows slight improvement in the
correlation coefficient value (0.54) and a reduction in APE
(37%) value. Therefore, none of the three methods per-

Figure 3. Time series intercomparisons of PM2.5 mass concentration observed from surface station and
those estimated using three different statistical models. Difference between observed and estimate from
two-variate (red), multivariate (blue), and from artificial neural network (green) are shows in this plot.
The three stations are in (a) Naples, Florida, (b) Kentucky-Ohio border area, and (c) Davie, Florida.
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formed very well for this station where variability in PM2.5
levels is also observed to be very low. Note that the main
input to these models is MODIS AOT (mean AOT = 0.13)
where retrieval in coastal areas has larger uncertainties due
to the surface heterogeneity [Remer et al., 2005; Levy et al.,
2007]. The time series of PM2.5 mass concentrations
derived using all three methods does not follow the observed
pattern and therefore underestimates some high PM2.5
values while over estimating some very low PM2.5 values.
Similar results were observed for other coastal stations.
Locations close to coasts often experience transport of
aerosols at higher altitude from the remote oceans and land
and a possible reason that the columnar AOT is not repre-
sentative of surface PM2.5 [Liu et al., 2005].
[18] Figure 3b presents a similar time series analysis for a

ground station at Covington, Kentucky (39.1�N and
84.5�W, station number 41 in the work of Gupta and
Christopher [2009]). This station is representative of other
stations (>65%) where a good degree of improvement in
correlation coefficient and APE value is obtained while
using ANN methods as compared to TVM and MVM.
Correlation coefficient increased from 0.67 for TVM to
0.77 for MVM to 0.83 for ANN. The APE values reduced to
30% for ANN from 41% and 35% for TVM and MVM,
respectively. Figure 3b clearly shows the change in PM2.5
time series behavior when ANN and MVM methods are
applied instead of TVM. Root mean square errors (RMSE)
over this station are 6.3, 8.4, and 7.2 mgm�3 for ANN,
TVM, and MVM, respectively. A closer look at the time
series indicates that both MVM and ANN methods under-
estimate the PM2.5 mass during pollution events with high
PM2.5 values (PM2.5 > 45 mgm�3). The height of planetary
boundary layer over this station reaches as high as 2.3 km
with average value of about 0.7 km. The HPBL distribution
over this station shows large frequency of HPBL with
values greater than 1 km, that improves PM2.5 estimations.
Being an urban location (hence dominated by hygroscopic
particles), inclusion of relative humidity corrects the AOT
values due to enhanced scattering by aerosols particles. This
indicates that inclusion of local meteorology and satellite
data sets in the model does improve the estimation of PM2.5
mass but the degree of improvement varies with geographic
locations, which is a function of aerosol type and uncer-
tainty in aerosol retrievals due to surface characterization.
[19] Figure 3c shows an example of PM2.5 time series for

a station where estimation accuracies degraded when ANN
was used when compared to MVM method. This is also a
coastal station in Davie, Florida and is identified as station
number 10 in the work of Gupta and Christopher [2009].
Low levels (<15 mgm�3) of PM2.5 mass were observed
during the study period with some exception when PM2.5
air quality were in the moderate (>15.4 mgm�3) category.
PM2.5 mass concentration estimated using TVM is almost
constant with only slight variations. Although, the time
series of estimated PM2.5 from MVM and ANN shows
some variation, the estimation errors remain high. Applica-
tion of MVM approach provides some improvement in the
estimation of PM2.5 by increasing correlation coefficient
from 0.24 to 0.37 and by reducing error (APE) from 49 to
47%. However, the use of ANN approach increased the
error to 53%, although there is slight improvement in
correlation coefficient (0.33).

4.2. Evaluation of ANN and Comparison With TVM
and MVM

[20] Figures 4a–4d present scatterplots between observed
and estimated hourly and 24 h mean PM2.5 mass for both
training and validation data sets. Also shown are best fit
line, the equation of this line including the slope and
intercept, linear correlation coefficient R, and number of
data points (N). Correlation and intercept values are same in
both cases, i.e., when using training and validation data sets
for hourly as well as for 24 h averages except for a minor
(�0.01) change in slope values. Therefore, the ANN is
producing similar results when using validation data sets
which are not seen by the network during the training
process. This identical performance of NN on validation data
sets shows the proper selection and distribution of training
data sets. Our earlier study [i.e., Gupta and Christopher,
2008a] has shown that hourly PM2.5 correlated better with
AOT as compared to 24 h mean values of PM2.5 mass
concentrations. But both MVM approach [Gupta and
Christopher, 2009] and ANN approach show that 24 h aver-
age values are estimated more accurately by these models
than hourly values of PM2.5 mass concentration. This could
also be due to lower variability in daily mean values
compared to large variability in hourly PM2.5 values.
[21] The R values are 0.74 and 0.78 for hourly and daily

mean comparisons whereas errors in estimation (APE) are
33 and 24%, respectively. The nearly constant value of
intercept (�6.2) shows the mean bias in the estimated mass
concentrations. In Figure 4, the higher values of PM2.5 are
underestimated. In some cases overestimation occurs for
lower values of PM2.5. MVM method also produced
underestimation of PM2.5 mass concentration in the higher
range. Earlier speculation for this type of model behavior
was the small number (<1% of total samples) of available
samples for high (>45 mgm�3) PM2.5 mass concentrations
[Gupta and Christopher, 2009]. Therefore, current input
parameters may not sufficiently represent the association
between PM2.5 and independent variables at higher PM2.5
mass concentration. Similar underestimations were also
noted by Liu et al. [2005] while using MISR aerosol
products. For further analysis, the relation between only
high PM2.5 and corresponding AOTs is shown in Figure 5.
Figure 5 clearly shows that there are many high PM2.5
values between 45 and 60 mgm�3 for which AOTs varied
from almost 0.0 to 1.4. The small range of PM2.5 mass
concentration for a large range of AOT values represents a
near constant concentration of surface level PM2.5 with a
large variability in the corresponding columnar loading
(AOTs). These data points are not associated with the few
stations only, but observed over many stations distributed
all over the study area. HPBL values during these observa-
tions were also distributed over a range from 0.1 to 2 km.
This type of AOT-PM2.5 behavior could be due to several
reasons including the possibility of multiple layers of
aerosols in the atmosphere. In such cases, aerosols that
are aloft could also contribute toward the total columnar
AOT values. In this case the columnar AOT does not show
a good agreement with surface level loading of aerosols.
Specific pollution episodes such as biomass burning can
produce multiple layers of aerosols aloft up to 5 km in the
atmosphere. Mistaking cloud as aerosols in MODIS AOT
retrieval algorithm could also lead such AOT-PM2.5
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Figure 4. Scatterplot showing performance of trained neural network on all the data sets over a 3-year
time period. Separate plots are presented for (top) hourly and (bottom) daily average values of PM2.5.
Also, (left) the training and (right) validation (red and green, respectively) data sets are presented.

Figure 5. Scatterplot between MODIS AOTand PM2.5 mass concentration (hourly PM2.5 > 45 mgm�3)
showing the poor AOT-PM2.5 relationship under high pollution events.
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behavior. Another possibility is the change in the particle
size distribution due to growth of urban aerosols in the
presence of water vapor. Hygroscopic particles such as
ammonium sulfate and ammonium nitrate under high rela-

tive humidity conditions can grow 2–10 times in size,
which increases their light extinction efficiencies [Wang
and Martin, 2007]. Therefore, high relative humidity con-
ditions also lead to high AOT values while dry mass

Figure 6. Validation of neural network models trained for each season using training data sets. Scatterplot
between observed and estimated PM2.5mass concentration for hourly and daily average are presented here.
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concentration of PM2.5 remains unchanged. Vertical aero-
sol layer information from spaceborne or ground-based
lidars are required to resolve this issue [i.e., Engel-Cox et
al., 2006]. Nevertheless, results from this network using all
the data sets provide almost 15 and 21% reduction in error
(APE) compared to TVM model in the work of Gupta and
Christopher [2009], whereas improvement in error over
MVM method is less than 3 and 4% for hourly and daily
average values. Reduction in error over different stations
varies within ±10% due to variations in satellite retrieval
accuracies and other associated local conditions such as
pollution type, emissions sources and transport of pollution.
[22] To understand the seasonal behavior of the data sets

using NN, the entire data set is separated into four seasons.
Seasons are defined as December to February as winter,
March to May as spring, June to August as summer, and
September to November as fall. Data for each season is
again separated into training, validation and testing data
(section 3). Training data set for each season are used to
train four different networks exclusively for each season.
Figures 6a–6h present the results from validation exercise
of seasonal networks developed exclusively for each sea-
son. Previous research [Engel-Cox et al., 2004] in this area
have shown that over the United States, winter shows
weaker relationship between PM2.5 and AOT hence large
error associated with PM2.5 estimations. Correlation coef-
ficients for hourly average PM2.5 estimations are highest
(0.76) in fall and lowest (0.49) in winter seasons compare to
0.70 and 0.63 in spring and summer. Poor estimation during
winter months could be associated with very low HPBL and
AOT values, which are subject to larger uncertainties.
Under dry stable air during winter when aerosol concen-
trations are low in the upper atmosphere, high surface
concentrations are often confined to very shallow boundary
layers, thus limiting the path length for satellite measure-
ments and therefore the sensitivity of the columnar AOT is
less. The average height of planetary boundary layer during
winter months, was less than 0.5 ± 0.3 km with minimum
values as low as couple of tens of meters. MODIS also
retrieved very low AOT with an average value of 0.08 ±
0.09 over the entire area during winter months. As dis-
cussed in part 1 of this study [Gupta and Christopher,
2009], winter month provides non favorable meteorological
conditions, such as low temperature and shallow boundary
layer, that lead to poor PM2.5 estimations. During summer,

the planetary boundary layer is well mixed and is deeper
with average value of 0.9 ± 0.5 km [Gupta and Christopher,
2009] and the AOTs are well correlated with surface level
pollution. R values in case of 24 h average for winter,
spring, summer and fall are 0.57, 0.73, 0.67, and 0.82,
respectively. Network behavior in different seasons is almost
same as MVM but estimation accuracies are improved. The
improvement in APE value is greater in case of 24 h average
PM2.5 mass concentration estimations (Table 2) since daily
data shows low day to day variability compared to hourly
measurements.
[23] Tables 2 and 3 provide an intercomparison of the

three different methods for estimating PM2.5 mass concen-
tration using satellite data sets. Absolute percentage error of
estimation (APE) and linear correlation coefficients (R) are
reported in Tables 2 and 3 for each method. The numbers in
parenthesis represent the improvement in the statistical
parameter over two-variate method (TVM). The greatest
improvement in R value for hourly PM2.5 is during winter
(133%) whereas lowest improvement is during the fall
(23%) season. Similarly, improvement in R for 24 h average
PM2.5 is highest in winter (256%) and lowest during fall
(32%).
[24] Figure 7 shows the validation of ANN system at a

specific station (station number 72). Figure 7 (top) shows
time series of hourly average PM2.5 values during MODIS
overpass time and Figure 7 (bottom) is for 24 h averages.
This is the same location used in part 1 of this study to
demonstrate the MVM model performance. This location
represents the case where the use of meteorology signifi-
cantly improved the PM2.5 estimation. Further details on
these stations can be found in the work of Gupta and
Christopher [2009]. Correlation coefficient has changed
by 18%, i.e., from a value of 0.73 for TVM to 0.86 for ANN
for hourly average values. The percentage error of estimation
for this station is 29 and 18% for hourly and 24 h average
PM2.5 mass concentration. The observed daily PM2.5 mass
shows closer agreement with estimated PM2.5 when com-
pared to hourly PM2.5 values. In general, PM2.5 values
over this station are very low (<18 mgm�3) during winter
months and it starts increasing in summer (May 2006) and
remains high during all summer months. Figure 7 also
shows that the agreement between observed and estimated
PM2.5 mass are better during summer when compared to

Table 2. Absolute Percentage Error Intercomparison of Different

Statistical Approach Used to Estimate Surface Level PM2.5 Mass

Concentration Using Satellite Remote Sensing Data Setsa

Data

Model Type

Two-
Variant Multivariant Neural Network

1 h 24 h 1 h 24 h 1 h 24 h

1 All data 39 29 34 (13) 24 (17) 33 (15) 23 (21)
2 Spring 39 29 34 (13) 24 (17) 32 (18) 22 (24)
3 Summer 34 29 32 (06) 26 (10) 30 (12) 24 (17)
4 Fall 40 30 35 (13) 25 (17) 31 (23) 22 (27)
5 Winter 49 32 44 (10) 28 (13) 41 (16) 26 (19)

aThe number in parentheses represents percentage improvement over
two-variant regression model.

Table 3. Linear Correlation Coefficient Intercomparison of

Different Statistical Approach Used to Estimate Surface Level

PM2.5 Mass Concentration Using Satellite Remote Sensing Data

Setsa

Data

Model Type

Two-
Variant Multivariant

Neural
Network

1 h 24 h 1 h 24 h 1 h 24 h

1 All data 0.60 0.59 0.68 (13) 0.69 (17) 0.74 (23) 0.78 (32)
2 Spring 0.53 0.48 0.64 (21) 0.65 (35) 0.70 (32) 0.73 (52)
3 Summer 0.49 0.49 0.57 (16) 0.61 (24) 0.63 (29) 0.67 (37)
4 Fall 0.62 0.62 0.70 (13) 0.74 (19) 0.76 (23) 0.82 (32)
5 Winter 0.21 0.16 0.42 (100) 0.47 (194) 0.49 (133) 0.57 (256)

aThe number in bracket parentheses represents percentage improvement
over two-variant regression model.
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winter seasons, which is consistent with previous studies
[Gupta and Christopher, 2008b; Engel-Cox et al., 2004].

5. Summary and Conclusions

[25] Quantitative information on surface level PM2.5
mass concentration is very useful for monitoring and
regulating particulate matter air quality. Satellite data are a
valuable tool for providing such information over global
regions with high temporal and spatial resolutions, espe-
cially in the areas where surface measurements are very
sporadic or not available [Hoff and Christopher, 2009]. The
derivation of surface level PM2.5 mass using total columnar
AOT value is an ongoing area of research and several
challenges remain. In general, AOT-PM2.5 relationships
are used to derive PM2.5 mass at the surface. In the current
study, we explored the possibility of using an artificial
neural network system for estimating PM2.5 mass instead
of simple regression equations. Several neural network
models have been trained, tested and validated using 3 years
of surface, satellite, and meteorological fields in the south-

eastern United States. This ANN- based model takes satel-
lite derived AOTs and model produced meteorological
fields as input and estimates hourly and daily averaged
PM2.5 mass. We also compared the performance of ANN
model with TVM and MVM models. Results from ANN
show significant improvement in APE (15–21%) when
compared to the TVM method whereas improvement over
MVM is very small (3–4%). The correlation coefficients
increased to 0.74 and 0.78 for ANN from 0.60 and 0.59
(which shows an increment of 23 and 32%) for TVM for
hourly and daily average PM2.5 mass, respectively. Further
analysis shows that improvements in R and APE values
vary with seasons as well as geographical locations. The fall
months show highest improvement in APE and R values for
ANN compared to TVM and MVM models. Absolute
percentage errors for fall months show the largest improve-
ments by 23 and 27% on TVM and by 11 and 12% on
MVM models for hourly and daily averaged PM2.5 mass
concentrations, respectively. ANN models during other
three seasons show 6 to 8% improvements in APE values
over MVM models. Improvement in correlations during

Figure 7. Example of time series validation of model based on neural network for (top) hourly and
(bottom) daily average PM2.5 mass concentration estimation over a station in Tennessee.
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winter season is almost two to threefolds for ANN over
TVM. Overall, the ANN shows more improvement in
accuracies for daily averaged PM2.5 mass concentration
estimation than hourly averaged values, which is similar to
MVM method. Agencies interested in air quality monitoring
could benefit from the methods and analysis presented in
this paper.
[26] Estimation of daily averaged PM2.5 level is more of

interest to environmental agencies for monitoring air quality
in the region as their standards are governed by daily
averaged values rather than hourly values. The estimation
of PM2.5 mass during high pollution level at surface as well
as aloft in the atmosphere presents more challenges for all
three models. High aerosol loadings in the layer above the
boundary layer were found difficult to handle by these
statistical models, but inclusion of vertical distribution
information of aerosols from new space based lidars such
as CALIPSO should improve our understanding. Artificial
neural network underestimated high PM2.5 mass concen-
tration, which makes them similar to MVM models. More
research is required to model these high pollution events.
Further testing of new networks with improved training
algorithms, use of new activation functions, more input
parameters may produce better results.
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