A deep learning model for automated detection of intense mid-latitude convection using geostationary satellite images
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ABSTRACT

[bookmark: _GoBack]Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong, persistent overshooting tops, U or V-shaped storm top temperature patterns, thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), above anvil cirrus plumes, cloud-top divergence, spatial and temporal trends in lightning mapping, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (ConvNet) was trained on 0.64 µm reflectance and 10.35 µm brightness temperature from the Advanced Baseline Imager (ABI) and flash extent density (FED) from the Geostationary Lightning Mapper (GLM) aboard GOES-16. Using a training dataset consisting of over 220,000 human-labeled satellite images, the ConvNet learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The ConvNet also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive permutation test ranked the most important predictors as: 1) ABI 10.35 µm brightness temperature, 2) ABI GLM FED, and 3) ABI 0.64 µm reflectance. The ConvNet model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather day or night over the full range of instrument scan modes. 

1. Introduction
Since the advent of weather satellites, researchers have been investigating signatures of intense convection from satellite images (e.g., Purdom 1976, Adler and Fenn 1979, Menzel and Purdom 1994, Schmit et al. 2005, Schmit et al. 2015). Forecasters frequently scrutinize satellite imagery to help infer storm dynamics and diagnose and forecast the intensity of thunderstorms, which can generate a variety of hazards. Intense convective updrafts frequently penetrate the tropopause, resulting in “overshooting” cloud tops (OTs). These features may block strong upper-level wind flow, which is diverted around the OTs, carrying cloud debris from the updraft summit, resulting in U or V-shaped thermal couplets in infrared (IR) brightness temperature (BT) imagery (e.g., Setvak et al. 2013, Wang 2007, Brunner et al 2007). Furthermore, high refresh sequences of geostationary satellite images have been used to retrieve cloud-top divergence (CTD) and cloud-top vorticity (CTV) and subsequently detect supercell thunderstorms (Apke et al. 2016). Textual patterns at cloud top have also been used to infer updraft strength (Bedka and Khlopenkov 2016). In the presence of strong upper-level flow, some overshoots generate above anvil cirrus plumes (AACPs) downstream from the OT as a result of internal gravity wave breaking (Wang 2003, Homeyer et al. 2017, Bedka et al. 2018). The AACPs are another robust indicator of ongoing or imminent severe weather hazards such as large hail, strong downburst wind gusts, and tornadoes.
The electrical energy manifested in lightning flashes is related to the kinetic energy and overall vigor of thunderstorm updrafts. Updrafts provide an environment for mixed-phase precipitation processes and a mechanism for microphysical charge transfer and cloud-scale charge separation, generating large potential differences (Schultz et al. 2011).  An increasing rate of total lightning flashes in a storm is often a good indicator of an intensifying convective updraft.
While automated algorithms that identify targeted components of the larger set of passive satellite-based intense convection features have been successfully developed and tested (e.g., Schultz et al. 2011, Bedka and Khlopenkov 2016, Apke et al. 2016), no algorithm or system has been able to integrate all of the severe weather-pertinent human identifiable features into a single product. In an effort to simplify algorithm development and consolidate salient satellite-based features of thunderstorms into a single output, we utilize a deep learning approach that mimics expert human pattern recognition of intense convection in satellite imagery.
Deep learning is a subset of machine learning-based artificial intelligence that includes methods such as deeply layered artificial neural networks. Neural networks have the ability to encode spatiotemporal features at multiple scales and levels of abstraction with the ultimate goal of encoding features that maximize performance (Gagne II et al. 2019). While feedforward neural networks contain one or more layers of densely connected hidden layers, convolutional neural networks (ConvNet) contain sparsely connected hidden layers and carry the assumption that the inputs are images and thus have spatial context. Deep learning models have yielded excellent performance on image recognition tasks for non-meteorological phenomena (Krizhevsky et al. 2012) and we seek to apply such methods to weather satellite imagery. 
There has already been success with deep learning methods for synoptic-scale front detection (Lagerquist et al. 2019), hail size estimation in numerical weather prediction (NWP) model output (Gagne II et al. 2019), and tornado prediction (Lagerquist et al. 2018). To the authors’ knowledge, this is the first application of deep learning on weather satellite imagery targeting convection intensity. In this paper, a ConvNet model was trained in a supervised manner to generate an “intense convection probability” (ICP) product. One benefit of ConvNets, and deep learning in general, is the greatly reduced need for feature engineering, which can be analytically challenging, difficult to optimize generally, and lacking in formalized evaluation tools. This not only saves considerable time but makes the model more objective by not superimposing scientists’ preconceived notions of what features are important in an image. The model learns from the training data the salient spatiotemporal features that result in the best fit using a numerical optimization process called backpropagation (Goodfellow et al. 2016). After discussing the construction of the ConvNet, we characterize the performance of the model and show that the model learned several features, including a variety of features that human experts most often associate with intense convection.

2. Data and methods
a) Meteorological data
GOES-16 Advanced Baseline Imager (ABI; Schmit et al. 2005) and Geostationary Lightning Mapper (GLM; Rudlosky et al. 2019, Goodman et al. 2013) radiance and flash data were collected for 29 convectively active days in the May - July 2018 timeframe (Table 1). Dates were selected to include a variety of satellite viewing angles and geography (see Figure 1), each representing a “convective day” from 12 UTC of the listed date to 12 UTC of the next date. The channel 2 reflectance (CH02) and channel 13 BT (CH13) were calculated using attributes from ABI Level-1b NetCDF files for all ABI contiguous U.S. (CONUS) sector files for each convective date (image cadence of 5 min). This paper focuses on these two ABI channels since they are the most fundamental channels for deep convection applications. Future work may assess the impact of other ABI channels. GLM Level-2 files, which contain lightning flash, group, and event point data, were processed with an open-source software package called glmtools (Bruning 2019). This software package was used to create gridded fields for several unique GLM attributes: flash extent density (FED), flash centroid density (FCD), total optical energy (TOA), and average flash area (AFA; see example imagery in Figure 2). The GLM fields were created for the ABI CONUS sector geostationary projection at 2 km spatial resolution[footnoteRef:2]. [2:  The native resolution of the GLM is approximately 10 km across its domain, but the gridding was performed at 2 km in this paper in order eliminate “double counting” and “gaps” that can occur from remapping to a precise 10 km horizontal resolution. ] 

In order to locate thunderstorms in the training data, NOAA/CIMSS ProbSevere JSON files were used (Cintineo et al. 2020). The ProbSevere files include the centroid time and latitude/longitude of radar-identified convective cells every two minutes. The ProbSevere “thunderstorm” objects are based on Multi-Radar Multi-Sensor [MRMS] imagery (Smith et al. 2016) A “thunderstorm” is defined as a convective cell that was successfully tracked for at least 45 minutes by the automated procedure utilized by ProbSevere (e.g., Cintineo et al. 2014). The thunderstorm must also have had a flash rate of 2 fl min-1 or greater at some point during the automated tracking period, as inferred from the Earth Networks Total Lightning data set used by ProbSevere (e.g., Cintineo et al., 2018). The radar object centroid time and location were used to automatically generate small storm centered image patches from the ABI and GLM CONUS sector data, resulting in 222,854 image patches from 14,745 independent storms. Severe hail, wind, and tornado reports were also gathered from NOAA’s Storm Events Database (NOAA 2019) and linked to the storm image samples via ProbSevere radar objects (e.g., Cintineo et al. 2020). The severe reports were not used in labeling or validation, but simply as a way to characterize the dataset (see section 2d). 
b) Data labeling
The GOES-16 image patches were generated for each ABI channel and GLM product listed above. An image patch size of ~64 x 64 km was heuristically chosen to represent the “storm-scale”.  Based on a subjective analysis, the chosen domain size captured most spatial features in a storm without being significantly contaminated by nearby storms. The 64 x 64 km domain was the same for all channels and resulted in 128 x 128-pixel images for ABI CH02 and 32 x 32-pixel images for ABI CH13 and the GLM channels. 
Portable Network Graphics (PNG) images created for ABI CH13 and CH02 enabled manual storm labeling. Human experts (with cross checking) performed the labeling using a custom tool built on the React javascript library (see Figure 3 for an example). The experts (3 of the co-authors of this paper) labeled all images as either “intense” (~22,500 images) or “ordinary” (~200,350 images) convection based on the presence, or lack thereof, of features widely accepted as being associated with strong mid-latitude convection (e.g., OTs, cold-U/V, CTD, AACP, high visible texture). 
MRMS merged composite reflectivity (MergedRef) was also contoured over the CH13 and CH02 images to provide extra context for labeling the intensity of a storm, but the ConvNet only utilizes GOES-16 satellite data. In the absence of a clear satellite indicator for intense convection, we looked for corresponding strong reflectivity cores (50-60+ dBZ), giving careful attention not to consider MergedRef too highly when radar beam blockage was present, or the storm was on the edge of MRMS range. Label selections were linked to a database for expedient cataloging of the dataset. While these PNG images were useful for labeling, they were not the same images that were used to train the ConvNet – the actual ABI and GLM channel data patches were stored in separate NetCDFs.
Based on the National Weather Service (NWS)-defined severe criteria of hail diameter ≥ 1 in, wind gust ≥ 50 kts, or the presence of a tornado, 55.5% of the “intense” class images were from severe storms (storm reporting only characterizes a subset of all storms, so not all severe storms will have a report), while only 5.6% of the “ordinary” class images were from severe storms. This analysis confirms that storms that exhibit one or more of the storm top features (e.g., OTs, cold-U/V, CTD, AACP, high visible texture) targeted by the human experts are much more likely to produce verified severe weather than storms where such clearly defined features were absent.

c) Model architecture
The 29 days of labeled data were divided into three groups – training, validation, and testing. The groups consisted of 18 (70%), 8 (22%), and 3 (8%) days, respectively (Table 1). A unique date range, as opposed to a random method, was used to minimize collinearity between images in each group (i.e., correlation between the three groups is minimal). The keras-python API with TensorFlow backend was used to perform the training and evaluation of ConvNets (Chollet 2015). From the training data partition of the labeled data, the model learns and encodes spatial features using backpropagation to minimize the loss function in the validation partition, which dictates performance. The model hyperparameters were optimized using the validation partition. Finally, the test data are used to independently evaluate model performance. This is a binary classification problem (“intense” or “ordinary” convection are the classes), so the loss function chosen was binary cross-entropy.
ConvNets use a multilayered architecture to learn spatial features. This architecture is typically broken down into convolutional layers with convolutional filters that build feature maps, activation layers (the rectified linear unit, ReLU, was chosen throughout), which apply non-linear activation functions to enable ConvNets to learn non-linear features, and pooling layers to help reduce dimensionality after convolutions (Li et al. 2019). After a series of convolution-activation-pooling layers, it is typical that one or more hidden densely or fully connected layers are added with dropout or batch normalization layers (used to prevent overfitting). 
There are many design components to creating a ConvNet, or the “hyperparameter optimization process”, including the number and types of layers, convolutional filter size, number of convolutional filters, regularization techniques, image padding techniques, learning rate, mini batch size, activation function, image patch sizes, number of epochs (passes through the data), and others, not to mention different combinations of potential input predictors. While many general-purpose ConvNet architectures exist (e.g., ResNet), we found that starting simple and iteratively building a ConvNet worked best for this problem, as opposed to using a more sophisticated architecture. Given the infinite number of ConvNet hyperparameter combinations, our proposed architecture is perhaps suboptimal, but works well in practice (see Table 2 for hyperparameter configuration). 
Upon testing various ConvNet inputs, we found that ABI CH02 reflectance (0.64 µm), CH13 BT (10.35 µm), and GLM FED, along with the scalar fields of satellite zenith angle, solar zenith angle, latitude, and longitude, provided the best performance in discerning intense convection in the validation dataset. The ABI channels were jointly processed through a set of six two-dimensional convolution (Conv2D) and maximum pooling (MaxPool) layers, whereas the FED was processed through a separate set of four Conv2D and MaxPool layers. The ABI and GLM convolutional bases were then joined with the scalar data and connected to three fully connected blocks of layers with 128, 16, and 1 node(s) (Figure 4). The last node used a sigmoid activation to force a probability between 0 and 1. Future work will examine if metrics that are derived from two or more ABI channels (e.g., brightness temperature differences, reflectance ratios, etc.) and/or multi-temporal data can be used to improve model performance.
One somewhat unique aspect of this model is the combination of an ABI convolutional base and a GLM convolutional base. Initially, FED, CH02, and CH13 were separate channels in one convolutional base (stack of convolutional and pooling layers). The single convolutional base formulation performed poorly compared to a model that excluded GLM. However, when the GLM input was processed using a separate stack of convolutional and pooling layers, the ABI + GLM model performance noticeably improved relative to an ABI-only model. This outcome illustrates that care must be taken when utilizing images from multiple data sources.

d) Verification Methodology
Standard performance metrics were computed separately for the validation and testing labeled data partitions. The computed metrics include binary accuracy, Brier skill score (BSS) measured against climatology, critical success index (CSI) and frequency bias, Peirce score (PS), and the area under the curve receiver operating characteristic (AUC-ROC). The binary accuracy simply measures how well a given probability threshold is able to discriminate between intense and ordinary convection but can exhibit a bias towards unbalanced datasets (~10% of the training data set consists of intense-labeled samples), especially if the majority class is trivial to predict and not relevant. The BSS measures probability calibration in an aggregated manner (comparable to mean squared error). The CSI metric is the ratio of true positives (‘hits’) to the sum of true positives, false positives (‘false alarms’), and false negatives (‘misses’) for a given probability threshold. It is an excellent metric for rare-occurring classes. The frequency bias measures the ratio between false positives and false negatives—values greater than one mean there are more false alarms than misses at a given probability threshold and values less than one indicate the inverse. The AUC-ROC measures the probability of detection (POD) or true positive rate vs. the probability of false detection (POFD) or false positive rate. It examines how well the model does at distinguishing between classes (1 = perfect separation; 0.5 = no separation). The PS is similar to the AUC-ROC, but contributions to the PS by a correct no or yes forecast increases as the event is more or less likely, respectively (Wilks 2006).
In addition to the validation and testing data set statistical metrics described in the previous paragraph, Intense Convection Probability (ICP) composites were created for a number of additional independent scenes from 2019 (all of the training, validation, and testing data were from 2018). To create the ICP composites, the required image patches were extracted from the entire GOES-16 scan domain using a sliding window, with a stride of four 2-km ABI pixels. Select contours were derived from the resulting grid of ICP and subsequently overlaid on the corresponding ABI imagery.
Saliency and layer-wise relevance propagation maps (Simonyan et al. 2014, McGovern et al. 2019, Binder et al. 2016), for select storm samples, are another form of model analysis utilized. The objective is to identify the spatial features, within each input image, that most influence the model results. The saliency of predictor x at image coordinate (i, j) with respect to prediction p, is . The saliency describes how changes in intensity at each image pixel will impact the final model probability. As a complement to saliency, layer-wise relevance propagation (LRP) is a framework that identifies the most relevant or important pixels by propagating a prediction backwards through the ConvNet to see which neurons (and eventually image pixels) contribute the most to a given prediction. 
Finally, in an effort to rank predictor importance, two permutation tests were applied to the trained ConvNet: Breiman et al. (2001; B01 hereafter) and Lakshmanan et al. (2015; L15 hereafter). In B01, samples are permuted (or randomized) one predictor at a time and associated loss is recorded and compared to the performance on unpermuted data. The method of Lakshmanan et al. (2015; L15 hereafter) carries this a step further, by executing successive permutations. First the permutation of B01 is carried out. Then, while keeping the k most important predictors permuted, the (k + 1)th most important predictor is found by permuting the remaining predictors one at a time. The predictor that results in the greatest loss in skill (highest drop in cost) is the (k + 1)th important predictor. The L15 method helps distinguish correlated predictors.

3. Results
a) Verification metrics
The scalar evaluation metrics are summarized in Table 3 for both the validation and testing datasets. The statistical evaluation is further partitioned into “day” and “night” using a solar zenith angle threshold of 85o. The model CSI was greater at night, perhaps because the labeled dataset contains more daytime images and/or due to other factors related to the diurnal cycle. For the entire validation dataset (combined night and day), the AUC-ROC diagram shows an inflection point at POFD = 10% and POD = 95% with a PS > 0.8 (Figure 10), while the CSI / frequency bias diagram (Figure 11) shows a maximum CSI of 0.59 and bias of 1.01 at ICP = 51%. The attributes diagram (also known as reliability diagrams [Wilks 2006]) shows that model is generally well calibrated, but the ConvNet exhibits some overforecasting bias between the 40% and 90% probability bins. This could be in part due to a sampling bias, since storm samples with ambiguous intensity (determined subjectively) were not labeled as either the ordinary or intense class, but instead excluded from the labeled dataset.

b) ICP composites
ICP composite maps were created for several independent scenes using the method in section 2d. The composite maps, when overlaid on ABI imagery, provide intuitive insight on model performance and may be an effective way to visualize results for eventual users of the product. The selected independent cases encompass a range of meteorological conditions, geography, and satellite viewing angles. Additional cases, with image sequences (e.g., animations) are available on the Cooperative Institute for Meteorological Satellite Studies (CIMSS) Satellite Blog (Cintineo 2019). The background ABI image utilized in the composite ICP maps is the CH02 (visible albedo) and CH13 (infrared window brightness temperature) “sandwich” product (unless otherwise stated), which allows human experts to simultaneously extract textual information from the visible albedo field and temperature information from the infrared window field (a transparency factor is applied to the infrared window image to achieve the desired effect). All background images are from GOES-16 CONUS scans, unless stated otherwise. The blue, cyan, and magenta contours represent the 25%, 50%, and 90% ICP values (except in the Alaska case), and the small filled circles represent preliminary severe local storm reports (LSRs) compiled by NOAA’s Storm Prediction Center. Reports are plotted on a given image if the time of occurrence is within -40 minutes of the start of the ABI scan. 
i) Wyoming – 10 September 2019
Figure 8 shows convective storm development in eastern Wyoming between 19:41 and 23:01 UTC on 10 September 2019. At 19:41 UTC (Figure 5a), the 50% ICP value is exceeded in the vicinity of OTs. By 20:11 UTC (Figure 8b), the anvil cloud has expanded greatly, OTs are still present, strong BT gradients are evident on the anvil edge, the ICP ≥ 90% for much of the cloud, and severe hail has been reported. By 21:01 UTC (Figure 8c), three different regions stand out: two ICP ≥ 90% regions, the southern of which exhibited an OT/cold-U/AACP, and one storm in the southern part of the domain with ICP ≥ 50%. At 22:36 UTC (Figure 8d), the northern contoured region of OTs is no longer apparent, and the storm approaching the Nebraska border has an ICP ≥ 90% with reports of severe weather (hail and tornado reports). A developing storm with ICP ≥ 50% is present in the southwest part of the domain at 22:36 UTC. At 22:46 UTC (Figure 8e), the storm to the southwest continues to develop with noticeable OTs. By 23:01 UTC (Figure 8f), the southwestern storm becomes tornadic, with the corresponding ICP ≥ 90%, while the storm to its northeast still exhibited OT/cold-U/AACP features and ICP ≥ 90%.
ii) Missouri – 26 August 2019
On 26 August 2019, a strong multicellular line of storms was surging southeastward through the Kansas City, MO metropolitan area around 16:01 UTC (Figure 9a) with a “bubbly-like” texture in the visible reflectance associated with unambiguous OTs (the ICP of the Kansas City storm was ≥ 90%). Shortly thereafter, multiple severe wind reports were recorded south of Kansas City, MO (not shown). By 18:01 UTC, two separate high ICP regions with OTs and gravity wave like patterns are apparent (Figure 9b). Multiple severe wind reports were associated with both high ICP regions shown in the 19:21 UTC image (Figure 9c). Later, the western storm segment was moving into Arkansas with a strong OT, visual evidence of an AACP, and ICP ≥ 90% (Figure 9d). The eastern storm weakened, but another storm quickly developed in its wake with max ICP ≥ 50% and a very pronounced OT and thermal couplet (Figure 9d). Immediately thereafter the new storm intensified and was associated with an ICP ≥ 90%, as shown in the 22:01 UTC image (Figure 9e). Severe hail and wind reports followed, as did the development of an AACP by 22:51 UTC (Figure 9f). The ICP of the storm that moved into Arkansas decreased from above 90% to below 25%, consistent with loss of robust textual and thermal patterns. No severe reports were associated with this storm after the ICP dropped below 25%. This example illustrates that the ConvNet results are consistent with manual interpretation of ABI imagery even when merging anvils from multiple updraft regions complicates the scene. 
iii) Kansas / Missouri – 15-16 August 2019
On 15-16 August 2019, a cold front initiated very strong storms in northern Kansas with three different areas of developing/mature convection, with maximum ICP ≥ 25%, ICP ≥ 50%, and ICP ≥ 50% (from left to right in Figure 10a) at 23:16 UTC on 15 August. The contoured regions were associated with OTs and strong BT gradients on the edge of anvil clouds near the primary overshoot region. The 23:41 UTC and 00:41 UTC images (Figure 10b and Figure 10c, respectively) show that the storms that originated in northeast Kansas continued to develop a satellite presentation indicative of vigorous convection and the associated ICP increased to ≥ 90%. Severe hail was reported. As is apparent in one of the last ABI images prior to sunset (Figure 10c), the storms also appeared to develop AACPs. In the absence of sunlight, ABI CH13 and the GLM FED are effectively the only image inputs to the ConvNet (Figure 10d-f), as the CH02 reflectance becomes a trivial predictor (value of zero everywhere). Even in the absence of sunlight, the ConvNet continues to provide results that are consistent with human interpretation of the imagery. The regions with ICP ≥ 50% contain OTs and cold-U features and were generally associated with severe reports (Figure 7d-f). Robust FED cores were also present, which boosted the ICP, particularly for the storms in Missouri (Figure 10g-i).
iv) Arizona – 23 September 2019
In response to moisture and instability associated with a 500-mb shortwave trough, numerous storms developed in western Arizona on 23 September 2019. At 16:31 UTC, the ICP was ≥ 50% for two of the storms, likely due to the presence of clear OTs and moderate-to-strong BT gradients around the cloud-top edges near the primary overshoot region (Figure 11a). By 17:06 UTC, the westernmost storm had an expanded area of ICP ≥ 50%, while the eastern storm ICP decreased to < 25% as cloud-top temperatures warmed, the textual features softened, and the BT gradient weakened (Figure 11b). By 17:21 UTC, the western storm intensified (ICP ≥ 90%), consistent with the appearance of a pronounced OT and AACP  (Figure 11c). While this cell received a severe thunderstorm warning from the NWS, no severe reports were recorded.
v) Alaska – 28 June 2019
On 28 June 2019 at 02:49 UTC, the NWS in Juneau, Alaska issued the office’s first ever severe thunderstorm warning. Since this scene was outside of the GLM field of view, a separate ConvNet was trained with ABI CH02 and CH13 images (no GLM), along with the scalar data discussed in section 2c. The new ConvNet was deployed on this scene using GOES-17 1-min mesoscale ABI scans (recall that the ConvNet was trained using GOES-16 data). Figure 12 shows ICP contours for the thunderstorm shortly before it was warned. It exhibited a cold-ring feature, which is more apparent in animations on the CIMSS Satellite Blog (Bachmeier 2019). The cold-ring is a cousin of the cold-U feature, with the difference due to stratification in wind shear above the tropopause (Setvak et al. 2010). The ICP contours in Figure 12 are for much lower values than the previous examples: 5% (blue), 15% (cyan), and 25% (magenta). Still, the ConvNet does a good job identifying the intensity of the storm relative to the surrounding convection, with the storm attaining a maximum ICP of 36% at 02:43 UTC, while all neighboring convection exhibited ICP < 5%. The lower probabilities may be, in part, due to the absence of the GLM. Nevertheless, this example demonstrates that the model generalizes reasonably well to new geographic locations (with associated satellite viewing and illumination geometry) and satellites (with differing radiometric performance).
An anecdotal assessment of the potential lead time to severe weather reports was performed for the first three ICP composite cases, when severe weather was observed (in Wyoming, Missouri, and Kansas/Missouri). Lead time was measured to the first severe weather report of any kind produced by unique updraft regions (discerned by the authors), highlighted by the ICP contours. The ICP thresholds used to measure lead time were the 25%, 50%, and 90% thresholds. For initial reports in which the given ICP threshold was not met, the lead time was measured as 0 min. The analysis was performed for the time ranges of the image sequences in Figure 8, Figure 9, and Figure 10. This yielded 12 reports with mean and median lead times (in minutes) of 56.8/52.5 (ICP ≥ 25%), 52.7/50 (ICP ≥ 50%), and 34.4/22 (ICP ≥ 90%) (see Table 4). While a small sample, these numbers are comparable to the lead times to initial severe weather reports recorded in Bedka et al. (2018) when measured from AACP features.
 
c) Layer-wise relevance propagation (LRP) and saliency
The saliency and LRP were computed for each 2D predictor using a number of samples from the validation dataset (Alber et al. 2019, Lagerquist and Gagne II 2019). The pixel-wise saliency and LRP values for ten true positive (e.g. “intense” human label) storm samples (Figure 13 and Figure 14) reveal important features the model has learned. The first column shows the ABI CH02 and CH13 sandwich image with GLM FED contoured. The second and third columns show the saliency and LRP for CH13, respectively. The fourth and fifth columns show the LRP for CH02 and FED, respectively. The LRP calculations use the “alpha-beta” rule of  = 1 and  = 0 (see Montavon et al. 2019), which does not yield negative relevance scores, but resulted in more coherent output than rules with  > 0. 
Important features identified in CH13 LRP (Figure 13 and Figure 14, column 3) include strong OTs, cold-U/Vs (cells A3, D3, F3), strong cloud-edge BT gradients (cells A3, D3, E3, H3), and warm clear air pixels around anvil clouds (cell H3). While robust OTs and cold-U features have been known for decades to be associated with intense convection, it is encouraging that the ConvNet correctly learned and encoded these features. Cloud-edge BT gradients are less known to be associated with intense convection, yet the model asserts that these are important features in intense storms, even though the human experts did not consciously consider this feature when labeling the images. Further analysis of model attributes and associated physical processes is the subject of future work.
The CH13 saliency indicates which pixels to make colder (blue) or warmer (red) in the 10.35 µm BT to increase the ICP (Figure 13 and Figure 14, column 2). While all storm samples indicate that colder OTs would help, cells D2, E2, F2, and H2 indicate stronger cloud-edge BT gradients would be conducive to higher ICP, and cells B2, C2, H2, and J2 show evidence that stronger thermal couplets near OTs increase the predicted ICP.
The CH02 LRP plots indicate that the ConvNet identifies “bubbly-like” texture features in OTs and cloud tops in general as important (Figure 13 and Figure 14, column 4), as well as clear air pixels (Figure 13, cell B4 and D4)—the latter highlighting the importance of storm isolation. While not shown, CH02 saliency demonstrated that bright pixels should be made brighter and dark pixels should be made darker in and near OTs to increase the ICP of the samples. In other words, the model has learned that more pronounced cloud top shadows, caused by intense overshoots, are an important indicator of storm intensity.
From a lightning mapping perspective, the GLM FED LRP (Figure 13 and Figure 14, column 5) seems to indicate that FED cores, or local maxima, in a storm are important, relative to more uniform flash extent density. The FED saliency is not shown, but was much noisier than the ABI channels, with no clear patterns emerging, making physical interpretation difficult. 
One interesting feature that the model did not appear to explicitly associate with intense convection is the AACP (Bedka et al. 2018), although model testing indicates that many storms with AACPs are correctly identified as intense convection (see Figure 8 through Figure 12 and Cintineo 2019). While not explicitly mapped out by the diagnostic tools, the driving force behind the AACP (an intense overshoot) is a key feature learned by the model.  In addition, other related features, such as the cold-U and thermal couplets influence the model results. Explicit encoding of AACP was not an objective.

d) Permutation tests
Two permutation tests (see section 2d) were performed on the trained ConvNet using keras code examples from Lagerquist and Gagne II (2019).  The cost function in Figure 15, which is the inverse of the AUC-ROC, is negatively oriented in order to be minimized. Since ABI CH02 0.64 µm reflectance is a trivial predictor after sunset, the permutation tests were run on storm samples from the validation dataset where the solar zenith angle was less than 85o (n = 36,900). The B01 method can be considered as, “the loss in skill as a result of permuting only the kth predictor”. Thus, importance is ranked on the reduction in the skill, or cost. The L15 method can be considered as, “the skill as a result of permuting the kth predictor and each more important predictor. Importance for L15 is ranked by the magnitude of the resulting skill score. 
For both the L15 and B01 permutation methods, the “No permutation” bar represents the original AUC-ROC value for the full ConvNet model for this daytime-only sample (AUC-ROC = 0.986). Since the first step of the L15 method is identically the B01 method, it was found that ABI CH13 was the most important predictor for both methods (AUC-ROC = 0.742). The B01 method found that CH02 and GLM FED were the next two important predictors, followed by the four scalar predictors. The L15 method found that FED was the 2nd most important predictor, followed by CH02. The satellite zenith angle and mean longitude were also reversed in rank in L15 compared to B01. 
By itself, the B01 test shows that CH02 contains more independent information that FED, but the L15 test reveals that once CH13 samples are randomized, CH02 does not contain as much additional or independent information as FED. It is also intuitive that the mean longitude (“mlon”) of a storm is more important than its mean latitude (“mlat”) within this data set, since storms in Oklahoma are generally more similar to storms in South Dakota, than South Dakota storms are to New York storms, for example. 

4. Discussion and Conclusion
A machine learning model that exploits the rich spatial and spectral information provided by the GOES-16 ABI and the lightning mapping provided by the GOES-16 GLM was developed with the goal of automatically identifying intense mid-latitude convection consistent with human expert interpretation of the satellite images. The convolutional neural network (ConvNet), a form of deep learning, learned several features, identifiable using a combination of high-resolution visible reflectance imagery, infrared window imagery, and lightning mapping imagery, that are known to be associated with intense convection. Model diagnostic tools showed that the model learned to recognize overshooting tops, enhanced-V thermal patterns, cold rings, thermal couplets, cloud-edge brightness temperature gradients, and robust lightning activity near updraft regions. A successive rank permutation test revealed that the most important predictors were ABI infrared window imagery (1st), GLM flash extent density imagery (2nd), and ABI visible reflectance imagery (3rd). The model results matched human expert analysis across a broad range of independent cases, highlighting regions of ongoing intense convection, and exhibited gainful lead time to initial severe weather reports (~20-50 min depending on ICP threshold).
The ConvNet model output could complement and enhance radar interrogation of storms and could be incorporated into nowcasting applications such as ProbSevere, with the goal of improving severe weather warnings. The ConvNet model may be particularly valuable for diagnosing and nowcasting convection in regions with limited or no radar coverage, In addition, the model shows promise for generalizing to other satellite sensors with similar spectral and spatial attributes as the GOES-R ABI (e.g. Himawari-8, Meteosat Third Generation, and GEO KOMPSAT-2A), eventually allowing for objective large scale monitoring of convection, and possibly providing a new framework for the study of convection. 
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Tables
[bookmark: _Ref23846696]Table 1: Dates for the training, validation, and test datasets for convolutional neural network development.
	Training
	Validation
	Test

	20180506, 20180507, 20180508, 20180511, 20180513, 20180514, 20180515, 20180518, 20180519, 20180529, 20180531, 20180601,
20180608, 20180611,
20180617, 20180619,
20180709, 20170729
	20180501
20180502
20180503
20180504
20180505
20180614
20180615
20180720
	20180510
20180623
20180702



[bookmark: _Ref32499632]Table 2: Select hyperparameters used for the training of the convolutional neural network.
	Hyperparameter
	Value

	Loss function
	Binary cross-entropy

	Learning rate
	0.01; reduced by a factor of 0.1 if no loss improvement after 2 epochs

	Total number of epochs
	14 (early stopping if no loss improvement after 6 epochs)

	Filter window
	3 x 3 pixels for each Conv2D

	Optimizer
	Rectified Adam (RAdam)

	Number of conv. Filters
	8 ( x 2 per Conv2D)

	Dropout ratio
	50%

	Non-linear activation
	Rectified linear unit (ReLU); sigmoid for final fully connected layer

	Padding
	‘same’

	GPU
	1 NVIDIA TITAN V



[bookmark: _Ref23944536]Table 3: Performance metric summary for the validation and testing datasets. 
	Skill metric
	Validation dataset
	Testing dataset

	
	Day
	Night
	All
	Day
	Night
	All

	Sample size
	37011
	13989
	51000
	12652
	5648
	18300

	Binary accuracy (at max CSI)
	95%
	91%
	94%
	96%
	97%
	96%

	Binary frequency bias (at max CSI)
	0.99
	1.04
	1.01
	0.88
	0.93
	0.94

	Maximum CSI (prob. threshold)
	0.58 (51%)
	0.61 (52%)
	0.59 (51%)
	0.72 (12%)
	0.81 (28%)
	0.74 (12%)

	Brier skill score
(climo Brier score = 0.104)
	0.565
	0.521
	0.566
	0.580
	0.782
	0.642

	AUC-ROC
	0.972
	0.953
	0.967
	0.981
	0.989
	0.982

	Pierce skill score
	0.83
	0.78
	0.82
	0.84
	0.90
	0.85



[bookmark: _Ref32567422]Table 4: The mean and median lead times (in minutes) to initial severe weather reports for 12 unique updrafts identified in the image sequences of Figure 8, Figure 9, and Figure 10, measured from three intense convection probability (ICP) thresholds.
	
	ICP ≥ 25%
	ICP ≥ 50%
	ICP ≥ 90%

	Mean
	56.8
	52.7
	34.4

	Median
	52.5
	50
	22




Figure Caption List

Figure 1: Nearly 15,000 thunderstorm tracks for the training, validation, and testing datasets. The different colors are used to help distinguish individual storm tracks.

Figure 2: GOES-16 ABI and GLM imagery of a supercell in central Texas. ABI 0.64 µm background image overlaid with a semi-transparent 10.35 µm BT image (top left), GLM flash extent density (top right), GLM total optical energy (bottom left), and GLM average flash area (bottom right).

Figure 3: Example images of the tool that was used to create the labeled dataset of “intense” and “ordinary” convection classes. A different version of these images, without overlays, text, and color bars, was used for training, validation, and testing. Contours are NEXRAD reflectivity from the Multi-radar, Multi-sensor System (MRMS).  The 30 dBZ (cyan), 40 dBZ (yellow), 50 dbZ (magenta), and 60 dBZ (brown) reflectivity contours are shown. The human assigned labels .

Figure 4: Schematic of the convolutional neural network described in this paper. ABI channels were processed through one convolutional base, while one GLM channel was processed through a separate convolutional base. Encoded ABI and GLM features were then joined with scalar variables and processed through several fully connected layers. Values in parentheses denote the output shape after the Conv2D, Flatten, and Dense layers, or the dropout percentage for the Dropout layers.

Figure 5: The AUC-ROC and Peirce score for the validation and testing datasets (solid red and dashed orange lines, respectively). The AUC-ROC value in the title is for the validation dataset only. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.

Figure 6: The binary CSI as a function of the POD and success ratio for the validation and testing datasets (solid red and dashed orange lines, respectively). Intersections with the dashed gray line indicate the frequency bias. Red and orange circles represent the locations of select probability values. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.

Figure 7: The reliability for the validation and testing datasets (solid red and dashed orange lines, respectively). Inset image shows the frequency of probability forecasts for the validation dataset only. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.

Figure 8: A series of intense convection probability composite maps (contours) for storms in Wyoming and Nebraska on 10 Sep 2019. The GOES-16 ABI visible reflectance and a semi-transparent infrared window image are used as the background. GOES-16 CONUS scan times: a) 19:41 UTC, b) 20:11 UTC, c) 21:01 UTC, d) 22:36 UTC, e) 22:46 UTC, and f) 23:01 UTC. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time.

Figure 9: Same as Figure 8 except for storms in Missouri on 26 Aug 2019. GOES-16 CONUS scan times: a) 16:01 UTC, b) 18:01 UTC, c) 19:21 UTC, d) 21:16 UTC, e) 22:01 UTC, and f) 22:51 UTC. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time.

Figure 10: A series of intense convection probability composite maps  (contours) for storms in Kansas and Missouri on 15-16 Aug 2019, The GOES-16 ABI visible reflectance and a semi-transparent infrared window image are used as the background when sunlight is present. In the absence of sunlight (a,b,c), the infrared window alone serves as the background (d,e,f).  The GLM flash extent density (g,h,i) is also shown for the corresponding image in the second row. GOES-16 CONUS scan times: a) 23:16 UTC, b) 23:41 UTC, c) 00:41 UTC, d) and g) 01:41 UTC, e) and h) 03:06 UTC, and f) and i) 04:06 UTC. Each orange rectangle encapsulates the same ABI scan time. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time. Open or “cutoff” contours on the edge of the images are a result of the sliding window methodology and represent areas where intense convection probability was not calculated.

Figure 11: Same as Figure 8, except for storms in Arizona on 23 Sep 2019. GOES-16 CONUS scan times: a) 16:51 UTC, b) 17:06 UTC, and c) 17:21 UTC. This storm was warned by the U.S. National Weather Service, but no severe hazards were reported.

Figure 12: Same as Figure 8 except for storms in the Alaska panhandle on 28 Jun 2019. The data were taken by the GOES-17 ABI at 02:43 UTC. Note that the contoured probabilities are for the 5%, 15%, and 25% thresholds.

Figure 13: Saliency and layer-wise relevance propagation (LRP) plots for ABI infrared window (channel 13) (columns 2 and 3) and LRP plots for ABI visible reflectance (channel 2) and GLM flash extent density (columns 4 and 5, respectively) for five storm samples from the validation dataset (rows A-E). The images in column 1 are visible/infrared window “sandwich” imagery with GLM flash extent density contours for 20, 80, and 120 flashes (5 min)-1 overlaid in shades of purple.

Figure 14: Same as Figure 13 except for five different samples from the validation dataset.

Figure 15: The successive permutation rank test (left) and single permutation rank test (right) for the trained convolutional neural network of this paper, using 36,900 daytime-only storm samples from the validation dataset. The cost is the inverse of the AUC-ROC score and “No permutation” represents the original AUC-ROC without any predictors permuted. CH13 and CH02 are the infrared window and visible reflectance channels on the ABI, FED is the flash extent density from the GLM, “mlon” and “mlat” are the mean longitude and latitude values of storm images, respectively, and “satzen” and “solzen” are the satellite zenith and solar zenith angles for storm samples respectively.
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[bookmark: _Ref24011685][bookmark: _Ref25240971]Figure 1: Nearly 15,000 thunderstorm tracks for the training, validation, and testing datasets. The different colors are used to help distinguish individual storm tracks. 
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[bookmark: _Ref23936616][bookmark: _Ref25240979]Figure 2: GOES-16 ABI and GLM imagery of a supercell in central Texas. ABI 0.64 µm background image overlaid with a semi-transparent 10.35 µm BT image (top left), GLM flash extent density (top right), GLM total optical energy (bottom left), and GLM average flash area (bottom right).
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[bookmark: _Ref23936585][bookmark: _Ref25240983]Figure 3: Example images of the tool that was used to create the labeled dataset of “intense” and “ordinary” convection classes. A different version of these images, without overlays, text, and color bars, was used for training, validation, and testing. Contours are NEXRAD reflectivity from the Multi-radar, Multi-sensor System (MRMS). The 30 dBZ (cyan), 40 dBZ (yellow), 50 dbZ (magenta), and 60 dBZ (brown) reflectivity contours are shown. The human assigned labels are uploaded to a database. 
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[bookmark: _Ref23938670][bookmark: _Ref25240990]Figure 4: Schematic of the convolutional neural network described in this paper. ABI channels were processed through one convolutional base, while one GLM channel was processed through a separate convolutional base. Encoded ABI and GLM features were then joined with scalar variables and processed through several fully connected layers. Values in parentheses denote the output shape after the Conv2D, Flatten, and Dense layers, or the dropout percentage for the Dropout layers.
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[bookmark: _Ref24016070][bookmark: _Ref25240998]Figure 5: The AUC-ROC and Peirce score for the validation and testing datasets (solid red and dashed orange lines, respectively). The AUC-ROC value in the title is for the validation dataset only. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.
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[bookmark: _Ref24016079][bookmark: _Ref25240999]Figure 6: The binary CSI as a function of the POD and success ratio for the validation and testing datasets (solid red and dashed orange lines, respectively). Intersections with the dashed gray line indicate the frequency bias. Red and orange circles represent the locations of select probability values. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.
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[bookmark: _Ref25241001]Figure 7: The reliability for the validation and testing datasets (solid red and dashed orange lines, respectively). Inset image shows the frequency of probability forecasts for the validation dataset only. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.
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[bookmark: _Ref24035982][bookmark: _Ref25240992]Figure 8: A series of intense convection probability composite maps (contours) for storms in Wyoming and Nebraska on 10 Sep 2019. The GOES-16 ABI visible reflectance and a semi-transparent infrared window image are used as the background. GOES-16 CONUS scan times: a) 19:41 UTC, b) 20:11 UTC, c) 21:01 UTC, d) 22:36 UTC, e) 22:46 UTC, and f) 23:01 UTC. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time.
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[bookmark: _Ref24092449][bookmark: _Ref25240993]Figure 9: Same as Figure 8 except for storms in Missouri on 26 Aug 2019. GOES-16 CONUS scan times: a) 16:01 UTC, b) 18:01 UTC, c) 19:21 UTC, d) 21:16 UTC, e) 22:01 UTC, and f) 22:51 UTC. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time.
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[bookmark: _Ref24110630][bookmark: _Ref25240994]Figure 10: A series of intense convection probability composite maps  (contours) for storms in Kansas and Missouri on 15-16 Aug 2019, The GOES-16 ABI visible reflectance and a semi-transparent infrared window image are used as the background when sunlight is present. In the absence of sunlight (a,b,c), the infrared window alone serves as the background (d,e,f).  The GLM flash extent density (g,h,i) is also shown for the corresponding image in the second row. GOES-16 CONUS scan times: a) 23:16 UTC, b) 23:41 UTC, c) 00:41 UTC, d) and g) 01:41 UTC, e) and h) 03:06 UTC, and f) and i) 04:06 UTC. Each orange rectangle encapsulates the same ABI scan time. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time. Open or “cutoff” contours on the edge of the images are a result of the sliding window methodology and represent areas where intense convection probability was not calculated.
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[bookmark: _Ref24113566][bookmark: _Ref25240995]Figure 11: Same as Figure 8, except for storms in Arizona on 23 Sep 2019. GOES-16 CONUS scan times: a) 16:51 UTC, b) 17:06 UTC, and c) 17:21 UTC. This storm was warned by the U.S. National Weather Service, but no severe hazards were reported.
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[bookmark: _Ref24114480][bookmark: _Ref25240996]Figure 12: Same as Figure 8 except for storms in the Alaska panhandle on 28 Jun 2019. The data were taken by the GOES-17 ABI at 02:43 UTC. Note that the contoured probabilities are for the 5%, 15%, and 25% thresholds. 
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[bookmark: _Ref24447991][bookmark: _Ref25241002]Figure 13: Saliency and layer-wise relevance propagation (LRP) plots for ABI infrared window (channel 13) (columns 2 and 3) and LRP plots for ABI visible reflectance (channel 2) and GLM flash extent density (columns 4 and 5, respectively) for five storm samples from the validation dataset (rows A-E). The images in column 1 are visible/infrared window “sandwich” imagery with GLM flash extent density contours for 20, 80, and 120 flashes (5 min)-1 overlaid in shades of purple.
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[bookmark: _Ref24541487][bookmark: _Ref25241003]Figure 14: Same as Figure 13 except for five different samples from the validation dataset.
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[bookmark: _Ref25140808][bookmark: _Ref25241004]Figure 15: The successive permutation rank test (left) and single permutation rank test (right) for the trained convolutional neural network of this paper, using 36,900 daytime-only storm samples from the validation dataset. The cost is the inverse of the AUC-ROC score and “No permutation” represents the original AUC-ROC without any predictors permuted. CH13 and CH02 are the infrared window and visible reflectance channels on the ABI, FED is the flash extent density from the GLM, “mlon” and “mlat” are the mean longitude and latitude values of storm images, respectively, and “satzen” and “solzen” are the satellite zenith and solar zenith angles for storm samples respectively. 
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