Applying artificial intelligence to detect intense convection using geostationary satellite data
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ABSTRACT

Intense thunderstorms pose hazards to both life and property for surface-based and aviation interests and can be a challenging phenomenon to detect and predict, particularly without weather radar data. Trained forecasters look for features in geostationary satellite data such as rapid cloud growth, strong, persistent overshooting tops, cold-U or -V infrared signatures, infrared thermal couplets, high visible channel spatial texture (indicative of “bubbling” cloud tops), above anvil cirrus plumes, cloud-top divergence, and other features to identify intense thunderstorms. In this paper, we present an artificial intelligence approach to detect intense thunderstorms based on how humans would classify thunderstorms as “intense”.
A branch of machine learning termed “deep learning” was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64 µm reflectance and 10.35 µm brightness temperature (BT) from the Advanced Baseline Imager (ABI) and flash extent density (FED) from the Geostationary Lightning Mapper (GLM) aboard GOES-East. From a training dataset of over 220,000 human-labeled satellite images, the CNN learned pertinent features that have been documented to be associated with intense convection and skillfully discriminated between intense and ordinary convection on validation and test samples of 51,000 and 18,000 images, respectively. A successive permutation test ranked the most important predictors as 1) ABI 10.35 µm BT, 2) ABI GLM FED, and 3) 0.64 µm reflectance. The model can be deployed both day and night at varying temporal resolution across the GOES-East domain, providing automatic, real-time detection of intense convection. 

1. Introduction
Since the advent of weather satellites, researchers have been investigating signatures of intense convection from satellite images (e.g., Purdom 1976, Adler and Fenn 1979, Menzel and Purdom 1994, Schmit et al. 2005, Schmit et al. 2015). Forecasters frequently scrutinize satellite imagery to help infer storm dynamics and diagnose and forecast the intensity of thunderstorms, which are hazardous to interests at the earth’s surface as well as aircraft. Intense convective updrafts frequently penetrate the tropopause, resulting in “overshooting” cloud tops (OTs). These features may block strong upper-level wind flow, which is diverted around the OTs, carrying cloud debris from the updraft summit, resulting in cold-U or -V thermal couplets in infrared (IR) brightness temperature (BT) imagery (e.g., Setvak et al. 2013, Wang 2007, Brunner et al 2007). Furthermore, persistent OTs and cold-U features result in trackable cloud objects in robust “bubbling” cloud-top regions, which can be used to retrieve cloud-top divergence (CTD) and cloud-top vorticity (CTV) from frequently updating images (every ~1 min), which can be an indicator of supercell thunderstorms (Apke et al. 2016). The high texture of these regions also helps to infer updraft strength (Bedka and Khlopenkov 2016). Some OTs with strong upper-level flow produce above anvil cirrus plumes (AACPs) downstream from the OT as a result of internal gravity wave breaking (Wang 2003, Homeyer et al. 2017, Bedka et al. 2018) and serve as another telltale sign of occurring or imminent severe weather such as large hail, strong downburst wind gusts, and tornadoes.
The electrical energy manifested in lightning flashes is related to the kinetic energy and overall vigor of thunderstorm updrafts. Updrafts provide an environment for mixed-phase precipitation processes and a mechanism for microphysical charge transfer and cloud-scale charge separation, generating large potential differences (Schultz et al. 2011).  An increasing rate of total lightning flashes in a storm is often a good indicator of an intensifying convective updraft.
Over time, algorithms have been developed to detect the described features with good success (e.g., Schultz et al. 2011, Bedka and Khlopenkov 2016, Apke et al. 2016), but each required development which can be expensive on time, and no algorithm or system has been able to integrate all of the described features that humans look for to diagnose intense convection into a single product. To reduce costly algorithm development, consolidate salient satellite features of thunderstorms, and provide convective intensity guidance in the absence of weather radar, this research uses a deep learning approach to mimic human pattern recognition of intense convection in satellite imagery.
Deep learning is a subset of artificial intelligence using machine learning methods such as artificial neural networks. Neural networks have the ability to encode spatiotemporal features at multiple scales and levels of abstraction with the ultimate goal of encoding features that maximize predictive skill (Gagne II et al. 2019). While feedforward neural networks contain one or more layers of densely connected hidden layers, convolutional neural networks (CNN) contain sparsely connected hidden layers and carry the assumption that the inputs are images and thus have spatial context. Deep learning models have yielded excellent performance on image recognition tasks for non-meteorological phenomena (Krizhevsky et al. 2012) and we seek to apply such methods to weather satellite imagery. 
There has already been success with deep learning methods for synoptic-scale front detection (Lagerquist et al. 2019), hail size estimation in numerical weather prediction (NWP) model output (Gagne II et al. 2019), and tornado prediction (Lagerquist et al. 2018). To the authors’ knowledge, this is the first application of deep learning on weather satellite imagery targeting convection intensity. In this paper, A CNN model was trained in a supervised manner from samples of storms in satellite imagery to produce an “intense convection probability” (ICP). One benefit of CNNs and deep learning in general is the greatly reduced need for feature engineering, which can be challenging but is largely what algorithm development relies on. This not only saves considerable time but makes the model more objective by not superimposing scientists’ preconceived notions of what features are important in an image. The model learns from the training data the salient spatiotemporal features which maximize predictive skill by a numerical optimization process called backpropagation (Goodfellow et al. 2016). After discussing the construction of the CNN, we characterize the model’s performance and show that the model learned features with great fidelity that humans recognize as being associated with intense convection.

2. Data and methods
a) Meteorological data
GOES-East Advanced Baseline Imager (ABI; Schmit et al. 2005) and Geostationary Lightning Mapper (GLM; Goodman et al. 2013) radiance and flash data was collected for 29 convectively active days from May, June, and July of 2018 (Table 1). Dates were selected to include a variety of satellite viewing angles and geographic locations of storms (see Figure 1), each representing a “convective day” from 12 UTC of the listed date to 12 UTC of the next date. Reflectance and BT were readily calculated using attributes from ABI Level-1b NetCDF files for channels 2, 5, 6, 7, 8, 10, 13, and 14 (e.g., CH14) for all ABI contiguous U.S. (CONUS) sector files for each convective date (every 5 min). GLM Level-2 files, which contain lightning flash, group, and event point data, were processed with an open-source software package called glmtools (Bruning 2019). Using the inherent child-parent relationships of events, groups and flashes, this software package was used to create gridded NetCDFs in the ABI CONUS sector geostationary projection and domain at 2 km spatial resolution[footnoteRef:1] for several unique GLM attributes: flash extent density (FED), flash centroid density (FCD), total optical energy (TOA), and average flash area (AFA; see example imagery in Figure 2).  [1:  The native resolution of the GLM is approximately 10 km across its domain, but the gridding was performed at 2 km in this paper in order eliminate “double counting” and “gaps” in the data that result from remapping to 10 km horizontal resolution.] 

In order to locate thunderstorms in this sample of days, NOAA/CIMSS ProbSevere JSON files were used (Cintineo et al. 2020), obtained from the University of Wisconsin Cooperative Institute of Meteorological Satellite Studies (UW-CIMSS). These files contain times and latitude/longitude centroid locations every 2 min for each radar-identified thunderstorm in and adjacent to the CONUS (within Multi-Radar Multi-Sensor [MRMS] range). A thunderstorm was defined as a ProbSevere radar object being tracked for at least 45 minutes and exhibited a flash rate of at least 2 fl min-1 at some point in its lifetime. The times and centroids of the radar objects were used to extract image patches from the ABI and GLM CONUS sector data, resulting in 222,854 storm image samples (each sample is one storm at one CONUS sector time) from 14,745 independent storms. Severe hail, wind, and tornado reports were also gathered from NOAA’s Storm Events Database (NOAA 2019) and linked to the storm image samples via ProbSevere objects. The severe reports were not used in training or validation, but simply as a way to characterize the dataset (see section 2d). 
b) Data labelling
The image patches were extracted from each ABI channel and GLM product mentioned above. An image patch size of ~64 x 64 km was heuristically chosen to represent the “storm-scale”.  This size subjectively captured most spatial features in a storm without being contaminated too much by nearby storms. The 64 x 64 km domain was the same for all channels and resulted in 128 x 128-pixel images for ABI CH02, 64 x 64-pixel images for ABI CH05, and 32 x 32-pixel images for the rest of the ABI and GLM channels. 
Portable Network Graphics images were created for ABI CH13 and CH02 to enable manual storm labeling. We labeled all images as either “intense” (~22,500 images) or “ordinary” (~200,350 images) convection subjectively but based on features known to be characteristic of strong convection (e.g., OTs, cold-U/V, CTD, AACP, high visible texture). Based on the NWS-defined severe criteria of hail diameter ≥ 1 in, a wind gust ≥ 50 kts, or the presence of a tornado, 55.5% of the “intense” class images were from severe storms, while 5.6% of the “ordinary” class images were from severe storms. This indicates that manual of labeling intense convection based on satellite features to some extent distinguished severe and non-severe convection as well.
MRMS merged composite reflectivity (MergedRef) was also contoured over the CH13 and CH02 images to provide extra context for labeling the intensity of a storm but was not used in training the CNN. In the absence of a clear satellite indicator for intense convection, we looked for corresponding strong reflectivity cores (50-60+ dBZ), giving careful attention not to consider MergedRef too highly when radar beam blockage was present, or the storm was on the edge of MRMS range. Label selections were linked to a database for expedient labeling of the dataset. While these images were useful for labeling (see Figure 3 for an example), they were not the same images that were used to train the CNN – the actual ABI and GLM channel data patches were stored in separate NetCDFs.
c) Model architecture
The 29-day sample was divided into three groups – training, validation, and testing datasets, consisting of 18, 8, and 3 convective days, approximately 70%, 22%, and 8% of the entire storm image dataset, respectively (Table 1). The sample was divided by convective day as opposed to a random method in order to reduce collinearity between images—the three datasets contain images from independent storms. The keras-python API with TensorFlow backend was used to perform the training and evaluation of CNNs (Chollet 2015). The training data is the sample from which the model learns and encodes spatial features, while the validation data is the sample for which backpropagation is performed to minimize the loss function, which maximizes predictive skill. The test data provides a final evaluation of skill and was not part of the training/validation process in building the CNN. This is a binary classification problem (“intense” or “ordinary” convection are the classes), so the loss function chosen was binary cross-entropy.
CNNs use a multilayered architecture to learn spatial features. This architecture is typically broken down into convolutional layers with convolutional filters to build feature maps, activation layers (the rectified linear unit, ReLU, was chosen throughout), which apply non-linear activation functions to enable CNNs to learn non-linear features, and pooling layers to help reduce dimensionality after convolutions (Li et al. 2019). After a series of convolution-activation-pooling layers, it is typical that one or more hidden densely or fully connected layers are added with dropout or batch normalization layers (used to prevent overfitting). 
There are many design components to creating a CNN, or the “hyperparameter optimization process”, including the number and types of layers, convolutional filter size, number of convolutional filters, regularization techniques, image padding techniques, learning rate, mini batch size, activation function, image patch sizes, number of epochs (passes through the data), and others, not to mention different combinations of potential input predictors. While many general-purpose CNN architectures exist (e.g., ResNet), we found starting simple and iteratively building a CNN worked best for this problem, as opposed to using a more sophisticated architecture. Given the infinite number of CNN hyperparameter combinations, our proposed architecture is perhaps suboptimal, but works well in practice (see Appendix A for hyperparameter configuration). 
[bookmark: _GoBack]After iterating with different CNN parameters, we found that ABI CH02 reflectance (0.64 µm), CH13 BT (10.35 µm), and GLM FED provided the best skill in discerning intense convection, along with the scalar fields of satellite zenith angle, solar zenith angle, latitude, and longitude. The ABI channels were jointly processed through a set of six two-dimensional convolution (Conv2D) and maximum pooling (MaxPool) layers, whereas the FED was processed through a separate set of four Conv2D and MaxPool layers. The ABI and GLM convolutional bases were then joined with the scalar data and connected to three fully connected blocks of layers with 128, 16, and 1 node(s) (Figure 4). The last node used a sigmoid activation to force a probability between 0 and 1. ABI CH05, CH06, CH07, CH08, CH09, CH10 and CH14, as well GLM TOE and AFA did not improve the skill of the model in Figure 4, possibly in part due to redundancy of information.
One somewhat unique aspect of this model is the combination of an ABI convolutional base and a GLM convolutional base. Initially, FED, CH02, and CH13 were separate channels in one convolutional base. It turns out that this diminishes the skill of a CH02 and CH13 only model, but when ABI and GLM channels are kept separate, the overall skill is noticeably improved. This point may underscore the fact that different “looking” data should be processed separately. CH02 and CH13 appear to exhibit adequate pixel-level correspondence to warrant their union together in one set of convolutional bases, but FED did not. 
d) Verification
Standard skill scores were computed for both the labeled validation and testing samples, including binary accuracy, Brier skill score (BSS) measured against climatology, critical success index (CSI) and frequency bias based off binarization of probability threshold, Peirce score (PS), and the area under the curve receiver operating characteristic (AUC-ROC). The binary accuracy simply measures how well a given probability threshold is able to discriminate between intense and ordinary convection but can exhibit a bias towards unbalanced datasets (this dataset contains ~10% intense-labeled samples), especially if the majority class is trivial to predict and not relevant. The BSS measures probability calibration in an aggregated manner (comparable to mean squared error). It helps answer the question, for a given probability, how often is the correct class predicted? The CSI metric is the ratio of true positives (‘hits’) to the sum of true positives, false positives (‘false alarms’), and false negatives (‘misses’) for a given probability threshold. It is an excellent metric for rare-occurring classes. The frequency bias measures the ratio between false positives and false negatives—values greater than one mean there are more false alarms than misses at a given probability threshold and values less than one indicate the inverse. The AUC-ROC measures the probability of detection (POD) or true positive rate vs. the probability of false detection (POFD) or false positive rate. It examines how well the model does at distinguishing between classes (1 = perfect separation; 0.5 = no separation). The PS is similar to the AUC-ROC, but contributions to the PS by a correct no or yes forecast increases as the event is more or less likely, respectively (Wilks 2006).
ICP “heat maps” were created for a number of scenes for independent days in 2019. To create these heat maps, a sliding window approach was used, whereby a fixed-size pixel window would extract the necessary data patches (CH02, CH13, FED) or scalar values, compute a single probability value, and slide to the next patch of images in the x and/or y directions. This was repeated until the predictions were complete for a scene. The grid of ICP was then contoured to create the heat maps.
Saliency and layer-wise relevance propagation maps (Simonyan et al. 2014, McGovern et al. 2019, Binder et al. 2016) were created for select storm samples. These methods help quantify the influence of each predictor on each image grid point on the final prediction from the model. The saliency of predictor x at grid point (i, j) with respect to prediction p, is . It measures the direction (positive or negative) you must modify grid point values to increase (or decrease) the probability. Layer-wise relevance propagation (LRP) is a framework that identifies the most relevant or important pixels by propagating a prediction backwards through the CNN to see which neurons (and eventually pixels) contribute the most to a given prediction. 
Finally, two permutation tests were run on the trained CNN to rank predictor importance. One method employed by Breiman et al. (2001; B01 hereafter), which permutes (or randomizes) samples one predictor at a time and measures the loss incurred by a certain cost function once the trained CNN is applied. Each permuted predictor is returned to its original state after the cost is computed as a result of its permutation.
The method of Lakshmanan et al. (2015; L15 hereafter) carries this a step further, by executing successive permutations. First the permutation of B01 is carried out. Then, while keeping the k most important predictors permuted, the (k + 1)th important predictor is found by permuting the remaining predictors one at a time. The predictor that results in the greatest loss in skill (highest drop in cost) is the (k + 1)th important predictor. The L15 method helps distinguish correlated predictors.

3. Results
a) ICP heat maps
ICP heat maps were created for several independent scenes using the method in section 2d for several reasons: 1) there is no benchmark product to measure skill, so heat maps provide a qualitative gauge on what the model labels as intense convection, and 2) heat maps provide an intuitive way that ICP may be visualized by end-users in real-time. Heat map examples for several scenes are presented here and more examples and animations are documented on the CIMSS Satellite Blog (Cintineo 2019).
In each of the following examples, the background image is the ABI CH02 and CH13 “sandwich” product (unless otherwise stated), which helps users see how storm-top CH02 texture correlates with storm-top CH13 BT and represent two channels of the CNN described in 2c. All background images are from GOES-East CONUS scans, unless stated otherwise. The blue, cyan, and magenta contours represent the 25%, 50%, and 90% ICP thresholds (except in the Alaska case), and the small filled circles represent preliminary severe local storm reports (LSRs) compiled by NOAA’s Storm Prediction Center. Reports are plotted on a given image if they are within 40 min prior to the ABI scan time. 
i) Wyoming – 10 September 2019
Figure 5a shows developing storms in eastern Wyoming with a 50% ICP contour surrounding one storm with an OT. By 20:11 UTC (Figure 5b), the anvil cloud has expanded greatly, OTs are still present, strong BT gradients are evident on the anvil edge, the ICP ≥ 90% for much of the cloud, and severe hail has been reported. By 21:01 UTC (Figure 5c), three different regions stand out: two ICP ≥ 90% regions within a thick ice mass (as a result of colliding anvil clouds), the southern of which exhibited an OT/cold-U/AACP, and one storm to its south associated with ICP ≥ 50%. At 22:36 UTC (Figure 5d), the northern contoured region has dissipated, along with the OTs it was highlighting, and the storm approaching the Nebraska border had ICP ≥ 90% with numerous severe hail and tornado reports. Another storm to the southwest developed, with ICP ≥ 50%. The ICP ≥ 50% contour of this storm continued to increase in size as its anvil cloud expanded and OTs appeared (Figure 5e), and tornadoes were reported when the ICP ≥ 90% and OTs strengthened (Figure 5f), while the storm to its northeast still exhibited OT/cold-U/AACP features and ICP ≥ 90%.
ii) Missouri – 26 August 2019
A strong multicellular line of storms was surging southeastward through the Kansas City, MO metropolitan area at 16:01 UTC (Figure 6a) with high CH02 texture, visible OTs, and ICP ≥ 90%. Shortly thereafter, multiple severe wind reports were recorded south of Kansas City (not shown). By 18:01 UTC, one storm segment had “detached” from the main line with a more easterly component of motion; both storm segments had cold cloud tops and enhanced CH02 visible texture, resulting in ICP ≥ 90% (Figure 6b). Multiple severe wind reports were associated with both storm segments within a large thick cirrus anvil cloud at 19:21 UTC (Figure 6c). Later, the western storm segment was moving into Arkansas with a strong OT, some evidence of an AACP, and ICP ≥ 90%. The eastern storm died off, but another storm quickly developed in its wake with max ICP ≥ 50% and a very pronounced OT and thermal couplet (Figure 6d). This storm intensified (ICP ≥ 90%) at 22:01 UTC (Figure 6e) and was associated with severe hail and wind reports and an AACP by 22:51 UTC (Figure 6f). The storm that moved into Arkansas quickly decreased in ICP after most of the CH02 texture and OTs diminished. No severe reports were associated with this storm after the ICP dropped below 90%. This example underscores the ability of the CNN to correctly pick out intense convection within a shield of thick cirrus and shows evidence that the ICP quickly responds to the development as well as decay of convection based on ABI and GLM features. 
iii) Kansas / Missouri – 15-16 August 2016
In mid-August, a cold front initiated very strong storms in northern Kansas with three different areas of bubbling convection, with maximum ICP ≥ 25%, ICP ≥ 50%, and ICP < 25% (from southwest to northeast) by 23:16 UTC (Figure 7a). These regions exhibited different degrees of OT strength and BT gradients on the edge of anvil clouds. By 23:41 UTC, the three areas had ICP ≥ 90%, ICP ≥ 90%, and ICP ≥ 50%, with very pronounced OTs and high CH02 texture in the southern two cells (Figure 7b). Severe hail was reported with all three cells by 00:41 UTC, when ICP ≥ 90% for each (Figure 7c). There was some evidence of AACPs as the 0.64 µm reflectance was beginning to disappear due to sunset (and increasing solar zenith angle). As the solar reflectance disappeared, the ICP was calculated with only ABI CH13 and GLM FED image patches. The CH02 reflectance becomes a trivial predictor, containing a value of zero everywhere. The CNN still produced characteristic ICP output with only CH13 and FED, shown at 01:41 UTC (Figure 7d,g), 03:06 UTC (Figure 7e,h) and 04:06 UTC (Figure 7f,i). The regions with local maxima of ICP ≥ 90% and ICP ≥ 50% contain OTs and cold-U features and were generally associated with severe reports. Robust FED cores were also present, which boosted the ICP, particularly for the storms in Missouri (Figure 7g,h,i).
iv) Arizona
In late September of 2019, a 500-mb shortwave trough brought ample moisture and instability to Arizona, spawning numerous storms. Two storms in western Arizona exhibited ICP ≥ 50% by 16:51 UTC, with bubbling storm tops and moderate-to-strong BT gradients around the cloud-top edges (Figure 8a). By 17:06 UTC, the westernmost storm had an expanded area of ICP ≥ 50%, while the eastern storm decreased to ICP < 25%, as cloud-top temperatures warmed and convection “softened”, manifested by a weakening cloud-edge BT gradient (Figure 8b). The western storm intensified at 17:21 UTC, with a pronounced OT and AACP and maximum ICP ≥ 90% (Figure 8c). While this cell received a severe thunderstorm warning from the National Weather Service (NWS), no severe reports were recorded.
v) Alaska
On 28 June 2019 at 02:49 UTC, the NWS in Juneau, Alaska issued the office’s first ever severe thunderstorm warning. Since this scene was outside of the GLM field of view, a separate CNN was trained with ABI CH02 and CH13 only, along with the scalar data discussed in section 2c. The new CNN was deployed on this scene using GOES-17 1-min mesoscale ABI scans. Figure 9 shows ICP contours for the thunderstorm shortly before it was warned. It exhibited a cold-ring feature, which is more apparent in animations on the CIMSS Satellite Blog (Bachmeier 2019). The cold-ring is a cousin of the cold-U feature, with the difference due to stratification in wind shear above the tropopause (Setvak et al. 2010). The ICP contours in Figure 9 are for much lower values than the previous examples: 5% (blue), 15% (cyan), and 25% (magenta). Still, the CNN does a good job identifying the intensity of the storm in a relative manner, with the storm attaining a maximum ICP of 36% at 02:43 UTC, while all neighboring convection exhibited ICP < 5%. 
b) Verification metrics
Table 2 summarizes different scalar skill metrics for the validation and testing datasets, which were broken down by night and day using a solar zenith angle threshold of 85o. The model exhibited higher CSI scores for nighttime images, which may be a result of a smaller sample size or the fact that convection is often at a more mature stage and perhaps easier to discriminate as intense or ordinary. For the entire validation dataset (combined night and day), the AUC-ROC diagram shows an inflection point at POFD = 10% and POD = 95% with a PS > 0.8 (Figure 10), while the CSI / frequency bias diagram (Figure 11) shows a maximum CSI of 0.59 and bias of 1.01 at ICP = 51%. The attributes diagram (Figure 12) shows skillful calibration of the model in both the validation and training samples but the CNN exhibits some overforecasting bias between the 40% and 90% probability bins. This could be in part due to a sampling bias, since storm samples with ambiguous intensity (determined subjectively) were not labeled as either the ordinary or intense class, but instead excluded. 
c) Layer-wise relevance propagation (LRP) and saliency
The saliency and LRP were computed for the trained CNN for each 2D predictor for a number of samples from the validation dataset (Alber et al. 2019, Lagerquist and Gagne II 2019). The pixel-wise saliency and LRP values plotted for ten true positive storm samples (Figure 13 and Figure 14) reveal important features the model has learned. The first column shows the ABI CH02 and CH13 sandwich image with GLM FED contoured. The second and third columns show the saliency and LRP for CH13, respectively. The fourth and fifth columns show the LRP for CH02 and FED, respectively. The LRP calculations use the “alpha-beta” rule of  = 1 and  = 0 (see Montavon et al. 2019), which does not yield negative relevance scores, but resulted in more coherent output than rules with  > 0. 
Important features identified in CH13 LRP (Figure 13 and Figure 14, column 3) include strong OTs, cold-U/Vs (cells A3, D3, F3), strong cloud-edge BT gradients (cells A3, D3, E3, H3), and warm clear air pixels around anvil clouds (cell H3). While robust OTs and cold-U features have been known for decades to be associated with intense convection, it is encouraging that the CNN correctly learned and encoded these features. Cloud-edge BT gradients are less known to be associated with intense convection, yet the model asserts that these are important features in intense storms. This is likely an indicator of the “hard” or “soft” appearance of anvil clouds. Robust convective updrafts tend to produce strong mass divergence of ice particles at the tropopause, resulting in a “hard” cloud edge where a strong BT gradient may occur (if the surface or background cloudiness is relatively warm). More benign updrafts still produce mass divergence at the tropopause, but the anvil cloud is “softer” or more washed out in appearance, due to entrainment processes affecting lower ice content flux provided by a relatively weaker updraft.
The CH13 saliency indicates which pixels to make colder (blue) or warmer (red) in the 10.35 µm BT to increase the ICP (Figure 13 and Figure 14, column 2). While all storm samples indicate that colder OTs would help, cells D2, E2, F2, and H2 indicate stronger cloud-edge BT gradients would be conducive to higher ICP, and cells B2, C2, H2, and J2 show evidence that stronger thermal couplets near OTs increase the predicted ICP.
The CH02 LRP plots indicate that the CNN identifies “bubbly” texture features in OTs and cloud tops in general as important (Figure 13 and Figure 14, column 4), as well as clear air pixels (Figure 13, cell B4 and D4)—the latter highlighting the importance of an isolated nature in intense convective storms. While not shown, CH02 saliency demonstrated that bright pixels should be made brighter and dark pixels should be made darker in and near OTs to increase the ICP of the samples. This indicates that more pronounced shadows in OTs are important, perhaps hinting that higher OT heights above the tropopause are more associated with intense convection than shorter OT heights (relative to the tropopause).
From an electrical perspective, the GLM FED LRP (Figure 13 and Figure 14, column 5) seems to indicate that FED cores in a storm are important. The FED saliency is not shown, but was much noisier than the ABI channels, with no clear patterns emerging, making its interpretation difficult at this time. 
One interesting feature that the model did not appear to signal as important but is known to be associated with intense convection is the AACP (Bedka et al. 2018). While it is unknown how many true positives and false negatives in the dataset contained the feature, numerous examples indicate that many storms with AACPs are correctly identified as intense convection (see Figure 5 through Figure 9 and Cintineo 2019). It is possible that the AACP is associated with some other salient feature such as a robust OT or cold-U that the CNN more easily learned, or that the 64 x 64 km sample image patches used for training and validation only contain a portion of AACP features, perhaps hindering the feature’s encoding in the CNN.
d) Permutation tests
Two permutation tests were performed on the trained CNN, as described in section 2d and using keras code examples from Lagerquist and Gagne II (2019).  The cost function in Figure 15 is the inverse of the AUC-ROC and must be negatively oriented in order to be minimized. Since ABI CH02 0.64 µm reflectance is a trivial predictor after sunset, the permutation tests were run on storm samples from the validation dataset where the solar zenith angle was less than 85o (n = 36,900). The B01 method can be considered as, “the loss in skill as a result of permuting only the kth predictor”. Thus, importance is ranked on the reduction in the skill, or cost. The L15 method can be considered as, “the skill as a result of permuting the kth predictor and each more important predictor. Importance for L15 is ranked by the magnitude of the resulting skill score. 
For both the L15 and B01 permutation methods, the “No permutation” bar represents the original AUC-ROC value for the full CNN model for this daytime-only sample (AUC-ROC = 0.986). Since the first step of the L15 method is identically the B01 method, it was found that ABI CH13 was the most important predictor for both methods (AUC-ROC = 0.742). The B01 method found that CH02 and GLM FED were the next two important predictors, followed by the four scalar predictors. The L15 method found that FED was the 2nd most important predictor, followed by CH02. The satellite zenith angle and mean longitude were also reversed in rank in L15 compared to B01. 
By itself, the B01 test shows that CH02 contains more independent information that FED, but the L15 test reveals that once CH13 samples are randomized, CH02 does not contain as much additional or independent information as FED. It is also intuitive that the mean longitude (“mlon”) of a storm is more important than its mean latitude (“mlat”), since storms in Oklahoma are generally more similar to storms in South Dakota, than South Dakota storms are to New York storms, for example. 

4. Discussion and Conclusion
Using the rich spatial and spectral information from ABI and storm electrification information from GLM we have developed a method to identify intense convection using an artificial intelligence approach. The deep learning model (a CNN) discovered pertinent features known to be associated with intense convection such as robust OTs, cold-U/V signatures and thermal couplets, high CH02 reflectance texture, and cloud-edge BT gradients. A successive rank permutation test revealed that the most important predictors were ABI CH13 BT (1st), GLM FED (2nd), and ABI CH02 reflectance (3rd). The model exhibited good discrimination day and night on a number of independent test cases in 2018 and 2019 (including storms at high satellite viewing angles in Alaska and Arizona), highlighting regions of ongoing intense convection, much of it producing severe weather reports. The ICP model output could complement and enhance radar interrogation of storms and could be incorporated into fused severe weather models such as ProbSevere for earlier intense convective development or decay signals. The CNN that maximized skill used two separate convolutional bases—one for ABI channels, and one for the GLM FED—joined together with a fully connected sequence of dense layers. 
Perhaps most importantly, the CNN of this paper could serve as a quantitative and objective baseline in monitoring convection in areas with no radar coverage within or outside of the CONUS. The framework of the CNN construction could be applied to other geostationary satellites with advanced imagers and optical lightning sensors such as the Meteosat Third Generation and Feng-Yun - 4 satellite series, providing nearly global quantitative and objective surveillance of intense convection. The artificial intelligence methods presented hold promise to help solve other forecasting problems and climate system questions to which the wealth of satellite data may hold answers. 
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Appendix A
Hyperparameter		Value
Loss function			binary cross-entropy
Learning rate			0.01; reduced by a factor of 0.1 if no loss improvement after 2 epochs
Total number of epochs		14 (early stopping if no loss improvement after 6 epochs)
Filter window			3 x 3 pixels for each Conv2D
Optimizer			Rectivied Adam (RAdam)
Number of conv. Filters		8 ( x 2 per Conv2D)
Dropout ratio			50%
Non-linear activation		Rectified linear unit (ReLU); sigmoid for final fully connected layer
Padding			‘same’
GPU				1 NVIDIA TITAN V
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Tables
[bookmark: _Ref23846696]Table 1: Dates for the training, validation, and test datasets for CNN development.
	Training
	Validation
	Test

	20180506, 20180507, 20180508, 20180511, 20180513, 20180514, 20180515, 20180518, 20180519, 20180529, 20180531, 20180601,
20180608, 20180611,
20180617, 20180619,
20180709, 20170729
	20180501
20180502
20180503
20180504
20180505
20180614
20180615
20180720
	20180510
20180623
20180702



[bookmark: _Ref23944536]Table 2: Skill metric summary for the validation and testing datasets. 
	Skill metric
	Validation dataset
	Testing dataset

	
	Day
	Night
	All
	Day
	Night
	All

	Sample size
	37011
	13989
	51000
	12652
	5648
	18300

	Binary accuracy (at max CSI)
	95%
	91%
	94%
	96%
	97%
	96%

	Binary frequency bias (at max CSI)
	0.99
	1.04
	1.01
	0.88
	0.93
	0.94

	Maximum CSI (prob. threshold)
	0.58 (51%)
	0.61 (52%)
	0.59 (51%)
	0.72 (12%)
	0.81 (28%)
	0.74 (12%)

	Brier skill score
(climo Brier score = 0.104)
	0.565
	0.521
	0.566
	0.580
	0.782
	0.642

	AUC-ROC
	0.972
	0.953
	0.967
	0.981
	0.989
	0.982

	Pierce skill score
	0.83
	0.78
	0.82
	0.84
	0.90
	0.85





Figure Caption List

Figure 1: Nearly 15,000 thunderstorm tracks for the training, validation, and testing datasets. The different colors are used to help distinguish individual storm tracks.

Figure 2: ABI and GLM imagery of a supercell. ABI 0.64 µm background image overlaid with 10.35 µm BT (top left), GLM flash extent density (top right), GLM total optical energy (bottom left), and GLM average flash area (bottom right).

Figure 3: Example images that were used to create the labeled dataset of “intense” and “ordinary” classes. These images were used for labelling only—their counterpart data patches were used for training, validation, and testing. Contours are MRMS MergedRef 30 dBZ (cyan), 40 dBZ (yellow), 50 dbZ (magenta), and 60 dBZ (brown) thresholds. The labels are linked via a database to data files.

Figure 4: Schematic of the CNN trained in this paper. ABI channels were processed through one convolutional base, while one GLM channel was processed through a separate convolutional base. Encoded ABI and GLM features were then joined with scalar variables and processed through several fully connected layers. Values in parenthesis denote the number of convolutional filters (for Conv2D layers), the number of fully connected neurons (for Dense layers), or the dropout percentage (for the Dropout layer).

Figure 5: A series of ICP heat maps (contours) for storms in Wyoming and Nebraska on 10 Sep 2019, with ABI CH02 and CH13 sandwich product as the background. GOES-East CONUS scan times: a) 19:41 UTC, b) 20:11 UTC, c) 21:01 UTC, d) 22:36 UTC, e) 22:46 UTC, and f) 23:01 UTC. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time.

Figure 6: A series of ICP heat maps (contours) for storms in Missouri on 8 Aug 2019, with ABI CH02 and CH13 sandwich product as the background. GOES-East CONUS scan times: a) 16:01 UTC, b) 18:01 UTC, c) 19:21 UTC, d) 21:16 UTC, e) 22:01 UTC, and f) 22:51 UTC. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time.

Figure 7: A series of ICP heat maps (contours) for storms in Kansas and Missouri on 15-16 Aug 2019, with ABI CH02 and CH13 sandwich product (a,b,c), ABI CH13 (d,e,f), and GLM FED (g,h,i) as the background. GOES-East CONUS scan times: a) 23:16 UTC, b) 23:41 UTC, c) 00:41 UTC, d) and g) 01:41 UTC, e) and h) 03:06 UTC, and f) and i) 04:06 UTC. Each orange rectangle encapsulates the same ABI scan time. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time. Open or “cutoff” contours on the edge of the images are a result of the sliding window methodology and represent areas where ICP was not calculated.

Figure 8: A series of ICP heat maps (contours) for storms in Arizona on 23 Sep 2019, with ABI CH02 and CH13 sandwich product as the background. GOES-East CONUS scan times: a) 16:51 UTC, b) 17:06 UTC, and c) 17:21 UTC. This storm was warned by the U.S. National Weather Service, but no severe hazards were reported.

Figure 9: An ICP heat map (contours) for storms in the Alaska panhandle on 28 Jun 2019, with ABI CH02 and CH13 sandwich product as the background. Note that the contoured probabilities are for the 5%, 15%, and 25% thresholds.

Figure 10: The AUC-ROC and Peirce score for the validation and testing datasets (solid red and dashed orange lines, respectively). The AUC-ROC value in the title is for the validation dataset only. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.

Figure 11: The binary CSI as a function of the POD and success ratio for the validation and testing datasets (solid red and dashed orange lines, respectively). Intersections with the dashed gray line indicate the frequency bias. Red and orange circles represent the locations of select probability values. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.

Figure 12: The reliability for the validation and testing datasets (solid red and dashed orange lines, respectively). Inset image shows the frequency of probability forecasts for the validation dataset only. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.

Figure 13: Saliency and layer-wise relevance propagation (LRP) plots for ABI CH02 (columns 2 and 3) and LRP plots for ABI CH02 and GLM FED (columns 4 and 5, respectively) for five storm samples from the validation dataset (rows A-E). Column 1 plots the CH02 and CH13 sandwich image with GLM FED contours for 20, 80, and 120 flashes (5 min)-1 in shades of purple.

Figure 14: Saliency and layer-wise relevance propagation (LRP) plots for ABI CH02 (columns 2 and 3) and LRP plots for ABI CH02 and GLM FED (columns 4 and 5, respectively) for five storm samples from the validation dataset (rows F-J). Column 1 plots the CH02 and CH13 sandwich image with GLM FED contours for 20, 80, and 120 flashes (5 min)-1 in shades of purple.

Figure 15: The successive permutation rank test (left) and single permutation rank test (right) for the trained CNN of this paper, using 36,900 daytime-only storm samples from the validation dataset. The cost is the inverse of the AUC-ROC score and “No permutation” represents the original AUC-ROC without any predictors permuted. CH13 and CH02 are channels from ABI, FED the flash extent density from GLM, “mlon” and “mlat” are the mean longitude and latitude values of storm images, respectively, and “satzen” and “solzen” are the satellite zenith and solar zenith angles for storm samples respectively.
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[bookmark: _Ref24011685][bookmark: _Ref25240971]Figure 1: Nearly 15,000 thunderstorm tracks for the training, validation, and testing datasets. The different colors are used to help distinguish individual storm tracks. 
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[bookmark: _Ref23936616][bookmark: _Ref25240979]Figure 2: ABI and GLM imagery of a supercell. ABI 0.64 µm background image overlaid with 10.35 µm BT (top left), GLM flash extent density (top right), GLM total optical energy (bottom left), and GLM average flash area (bottom right).
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[bookmark: _Ref23936585][bookmark: _Ref25240983]Figure 3: Example images that were used to create the labeled dataset of “intense” and “ordinary” classes. These images were used for labelling only—their counterpart data patches were used for training, validation, and testing. Contours are MRMS MergedRef 30 dBZ (cyan), 40 dBZ (yellow), 50 dbZ (magenta), and 60 dBZ (brown) thresholds. The labels are linked via a database to data files. 
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[bookmark: _Ref23938670][bookmark: _Ref25240990]Figure 4: Schematic of the CNN trained in this paper. ABI channels were processed through one convolutional base, while one GLM channel was processed through a separate convolutional base. Encoded ABI and GLM features were then joined with scalar variables and processed through several fully connected layers. Values in parenthesis denote the number of convolutional filters (for Conv2D layers), the number of fully connected neurons (for Dense layers), or the dropout percentage (for the Dropout layer).
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[bookmark: _Ref24035982][bookmark: _Ref25240992]Figure 5: A series of ICP heat maps (contours) for storms in Wyoming and Nebraska on 10 Sep 2019, with ABI CH02 and CH13 sandwich product as the background. GOES-East CONUS scan times: a) 19:41 UTC, b) 20:11 UTC, c) 21:01 UTC, d) 22:36 UTC, e) 22:46 UTC, and f) 23:01 UTC. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time.
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[bookmark: _Ref24092449][bookmark: _Ref25240993]Figure 6: A series of ICP heat maps (contours) for storms in Missouri on 8 Aug 2019, with ABI CH02 and CH13 sandwich product as the background. GOES-East CONUS scan times: a) 16:01 UTC, b) 18:01 UTC, c) 19:21 UTC, d) 21:16 UTC, e) 22:01 UTC, and f) 22:51 UTC. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time.
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[bookmark: _Ref24110630][bookmark: _Ref25240994]Figure 7: A series of ICP heat maps (contours) for storms in Kansas and Missouri on 15-16 Aug 2019, with ABI CH02 and CH13 sandwich product (a,b,c), ABI CH13 (d,e,f), and GLM FED (g,h,i) as the background. GOES-East CONUS scan times: a) 23:16 UTC, b) 23:41 UTC, c) 00:41 UTC, d) and g) 01:41 UTC, e) and h) 03:06 UTC, and f) and i) 04:06 UTC. Each orange rectangle encapsulates the same ABI scan time. Severe hazard reports (filled circles) occurred within 40 min of the satellite scan time. Open or “cutoff” contours on the edge of the images are a result of the sliding window methodology and represent areas where ICP was not calculated.
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[bookmark: _Ref24113566][bookmark: _Ref25240995]Figure 8: A series of ICP heat maps (contours) for storms in Arizona on 23 Sep 2019, with ABI CH02 and CH13 sandwich product as the background. GOES-East CONUS scan times: a) 16:51 UTC, b) 17:06 UTC, and c) 17:21 UTC. This storm was warned by the U.S. National Weather Service, but no severe hazards were reported.
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[bookmark: _Ref24114480][bookmark: _Ref25240996]Figure 9: An ICP heat map (contours) for storms in the Alaska panhandle on 28 Jun 2019, with ABI CH02 and CH13 sandwich product as the background. Note that the contoured probabilities are for the 5%, 15%, and 25% thresholds. 
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[bookmark: _Ref24016070][bookmark: _Ref25240998]Figure 10: The AUC-ROC and Peirce score for the validation and testing datasets (solid red and dashed orange lines, respectively). The AUC-ROC value in the title is for the validation dataset only. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.
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[bookmark: _Ref24016079][bookmark: _Ref25240999]Figure 11: The binary CSI as a function of the POD and success ratio for the validation and testing datasets (solid red and dashed orange lines, respectively). Intersections with the dashed gray line indicate the frequency bias. Red and orange circles represent the locations of select probability values. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.
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[bookmark: _Ref25241001]Figure 12: The reliability for the validation and testing datasets (solid red and dashed orange lines, respectively). Inset image shows the frequency of probability forecasts for the validation dataset only. Python code from Lagerquist and Gagne II (2019) was used to help create the plot.
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[bookmark: _Ref24447991][bookmark: _Ref25241002]Figure 13: Saliency and layer-wise relevance propagation (LRP) plots for ABI CH02 (columns 2 and 3) and LRP plots for ABI CH02 and GLM FED (columns 4 and 5, respectively) for five storm samples from the validation dataset (rows A-E). Column 1 plots the CH02 and CH13 sandwich image with GLM FED contours for 20, 80, and 120 flashes (5 min)-1 in shades of purple.
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[bookmark: _Ref24541487][bookmark: _Ref25241003]Figure 14: Saliency and layer-wise relevance propagation (LRP) plots for ABI CH02 (columns 2 and 3) and LRP plots for ABI CH02 and GLM FED (columns 4 and 5, respectively) for five storm samples from the validation dataset (rows F-J). Column 1 plots the CH02 and CH13 sandwich image with GLM FED contours for 20, 80, and 120 flashes (5 min)-1 in shades of purple.
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[bookmark: _Ref25140808][bookmark: _Ref25241004]Figure 15: The successive permutation rank test (left) and single permutation rank test (right) for the trained CNN of this paper, using 36,900 daytime-only storm samples from the validation dataset. The cost is the inverse of the AUC-ROC score and “No permutation” represents the original AUC-ROC without any predictors permuted. CH13 and CH02 are channels from ABI, FED the flash extent density from GLM, “mlon” and “mlat” are the mean longitude and latitude values of storm images, respectively, and “satzen” and “solzen” are the satellite zenith and solar zenith angles for storm samples respectively. 
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