Single-FOV Uncertainty Estimates of the VIIRS+CrIS Fusion Radiance Products

E. Eva Borbas, Elisabeth Weisz, Dongwei Fu, W. Paul Menzel, Chris Moeller,

Geoff Cureton*, Greg Quinn* Space Science and Engineering Center, University of Wisconsin-Madison *NASA Atmosphere-SIPS

Space Science and Engineering Center University of Wisconsin-Madison

Outline

- Fusion method
- Data monitoring, evaluation
- Single-FOV uncertainty estimates
- Future Plans

Goal

- The VIIRS+CrIS Fusion Radiance (FSNRAD) products have been created to provide a path for continuity of products based on the Terra, Aqua, SNPP, and NOAA-20 platforms.
- Why is this work important? MODIS has three channels sensitive to CO_2 in the 4.5 µm CO_2 band, four channels in the broad 15 µm CO_2 band, 2 channels sensitive to H_2O near 6.7 µm, and an ozone channel near 9 µm. VIIRS has none of these IR absorption bands. The lack of the CO_2 and H_2O channels results in a degradation of the accuracy of the cloud mask especially at night in high latitudes, other cloud products (cloud top pressure/height and thermodynamic phase) and the moisture products (total precipitable water vapor, upper tropospheric humidity).
- We addressed this restriction by constructing similar Aqua MODIS IR band radiances for VIIRS based on a fusion method that uses collocated VIIRS and CrIS data.

Imager+Sounder Spatial Fusion Schematics

LORES/HIRES ... low/high spatial resolution

(Cross et al. 2013, Weisz et al. 2017)

VIIRS+CrIS FSNRAD Product (on full VIIRS spatial resolution)

MODIS Infrared bands		VIIRS+CrIS Fus	sion Infrared bands		
band	Central Wavelength [µm]	band	Central Wavelength [μm]	Primary Use	
23	4.05	M13	4.05	Atmospheric temperature	
24	4.47	M24 Fusion	4.47	Atmospheric temperature	
25	4.52	M25 Fusion	4.52	Atmospheric temperature	
27	6.72	M27 Fusion*	6.72	Water vapor	
28	7.33	M28 Fusion	7.33	Water vapor	
29	8.55	M14	8.55	Surface and cloud properties	
30	9.73	M30 Fusion	9.73	Ozone	
31	11.03	M15 M15 Fusion**	10.76	Surface and cloud properties	
32	12.02	M16 M16 Fusion**	12.01	Surface and cloud properties	
33	13.34	M33 Fusion*	13.34	Cloud properties	
34	13.64	M34 Fusion*	13.64	Cloud properties	
35	13.94	M35 Fusion*	13.94	Cloud properties	
36	14.23	M36 Fusion*	14.23	Cloud properties	

*FSNRAD_SS subset for the CERES team – through Langley ASDC **BT diff for M15 and M16 are also provided for uncertainty estimate

Status of the V2 VIIRS+CrIS FSNRAD products

Product Name	Description	Status	Available at
FSNRAD_L2_VIIRS_CRIS_SNPP	S-NPP/VIIRS Fusion Radiances	Operational	LAADS DAAC
FSNRAD_L2_VIIRS_CRIS_NOAA20	NOAA20/VIIRS Fusion Radiances	Operational	LAADS DAAC
FSNRAD_L2_VIIRS_CRIS_SS_SNPP	S-NPP/VIIRS Subsetted Fusion Radiances	Operational	Atmosphere-SIPS
FSNRAD_L2_VIIRS_CRIS_SS_NOAA20	NOAA20/VIIRS Subsetted Fusion Radiances	Operational	Atmosphere-SIPS
FSNRAD_L2_VIIRS_CRIS_NOAA21	NOAA21/VIIRS Fusion Radiances	Tested	
FSNRAD_L2_VIIRS_CRIS_SS_NOAA21	NOAA21/VIIRS Subsetted Fusion Radiances	Tested	

• V2 FSNRAD available at NASA LAADS DAAC:

- DOI: 10.5067/VIIRS/FSNRAD_L2_VIIRS_CRIS_SNPP.002
- DOI: 10.5067/VIIRS/FSNRAD_L2_VIIRS_CRIS_NOAA20.002

- Note for SNPP: CrIS anomaly in LW data
 - May 21, 2021 July 12, 2021:
 - July 14, 2021 Aug 29, 2023:
 - •
 - Aug 29, 2023 Aug 31, 2023:
 - Aug 31/Sept 8 (operational), 2023 -

fill value for Band 30-36 (anomaly of CrIS LW channels)

fill value for Band 27, 28,

B30-36 restored (Side 1 -> Side 2)

fill value for Band 27-36 (Side 2 LW failure, MW was not working already)

fill value for Band 30-36, but B27, 28 restored (Side 2-Side 1)

Routine Assessment of Product Quality: Mean of BTdiffs (N20 FSNRAD – Aqua/MODIS)

University of Wisconsin-Madison

Routine Assessment of Product Quality: **STDEV** of BT diffs (N20 FSNRAD –Aqua/MODIS)

Space Science and Engineering Center

University of Wisconsin-Madison

Routine Assessment of Product Quality: Sample Numbers (N20 FSNRAD –Aqua/MODIS)

Space Science and Engineering Center

University of Wisconsin-Madison

Evaluation in Cloud Mask with CALIOP for 2014

Definition: CALIOP: cloudy if OD > 0.2, otherwise clear MOD35/MVCM: clear if probably or confident clear cloudy if probably or confident cloudy

Monthly mean agreements over the South Pole

(Li et al. 2020) used the 6.7 and 13.3 µm CrIS+VIIRS fusion bands in CLAVR-X, the NOAA operational cloud processing package. They demonstrated that the fusion radiancies improved cloud parameters, *like cloud mask (polar regions), type/phase, and cloud height for all latitudes.*

Space Science and Engineering Center University of Wisconsin-Madison

Dongwei Fu

Determining Single-FOV Uncertainties

- The goal was to provide a methodology to calculate uncertainties for each band of the V2 FSNRAD products
- Developed on MODIS+AIRS
- Applied on VIIRS+CrIS

BT [K] Statistics of MODIS/AIRS Fusion (April 17, 2015, global) – VIIRS/CrIS Fusion (Red)

	Full swath			Sounder swath			
	Mean	Stdev	RMS	Mean	Stdev	RMS	
Band 23	-0.23	2.35	2.36	-0.11	1.95	1.95	
Band 24	0.34	1.10	1.16	0.38	0.97	1.05	
Band 25	-0.33	1.15	1.20	-0.20	0.83	0.85	
Band 27	-0.15	2.02	2.03	-0.07	1.69	1.69	
Band 28	-0.37	3.04	3.06	-0.26	2.60	2.62	
Band 30	0.29	1.09	1.13	0.43	0.77	0.88	
Band 31	-0.18	1.41	1.42	-0.13	0.89	0.90	
Band 32	-0.16	1.40	1.41	-0.12	0.88	0.89	
Band 33	-0.24	1.11	1.14	-0.14	0.79	0.80	
Band 34	0.14	1.00	1.01	0.25	0.72	0.76	
Band 35	-0.16	0.81	0.83	-0.08	0.61	0.61	
Band 36	0.11	0.56	0.57	0.10	0.48	0.47	
Band 15	0.08	1.00	1.00	0.14	0.56	0.58	
Band 16	-0.11	0.94	0.95	0.05	0.45	0.45	

Space Science and Engineering Center University of Wisconsin-Madison

Methodology to derive SFOV VIIRS/CRIS Fusion 'OBT-FBT' BTD estimates

STEP 1: Derive the least-square solution coefficients between the observed – fusion BT differences for each channel and the predictors. MODIS and MODIS/AIRS fusion BT data are used for the full path (Matlab code: LSCOV).

Four Variables (predictors): [1] MODIS split-window (Band 31, Band 32) BT differences,

[2] Band 31 Observed minus Fusion BTs,

[3] Band 32 Observed minus Fusion BTs,

[4] MODIS Satellite zenith angle

	land			sea				
bands	Coef1	Coef2	Coef3	Coef4	Coef1	Coef2	Coef3	Coef4
23	-0.1350	2.1651	-1.3409	0.0051	-0.0213	2.7231	-1.8469	-0.0065
24	0.1606	-0.2468	0.3233	0.0108	0.0144	-0.0933	0.2229	0.0058
25	-0.0006	0.6346	-0.0946	-0.0055	-0.0142	0.7189	-0.1439	-0.0082
27	-0.0391	-0.0851	0.5645	-0.0003	-0.1736	-0.0227	0.5993	-0.0005
28	0.0197	0.0044	1.0031	-0.0081	0.0571	-0.2826	1.3784	-0.0067
30	0.1364	0.6077	-0.1452	0.0082	0.2000	0.7332	-0.2311	0.0002
31	0	1	0	0	0	1	0	0
32	0	0	1	0	0	0	1	0
33	0.0027	-0.6151	1.1610	-0.0058	0.0004	-0.7261	1.2984	-0.0055
34	0.0560	-0.7113	1.0267	0.0034	0.0508	-0.7486	1.1021	0.0002
35	-0.0078	-0.5134	0.7384	-0.0033	-0.0305	-0.5552	0.8117	-0.0046
36	-0.0381	-0.2538	0.3323	0.0050	-0.0494	-0.2760	0.3706	0.0039

Methodology to derive SFOV VIIRS/CRIS Fusion 'OBT-FBT' BTD estimates (Cont.)

STEP 2: . Apply these coefficients to original VIIRS B15 and B16 BTs and OBT-FBT BTD (from V/C fusion *nc files) for each fusion (MODIS) band:

xy = [pred1, pred2, pred3, pred4]

```
vc_btd = xy *coeffs
```

Where,

vc_btd ... final V/C fusion BTD estimates coeffs ... coefficients from table [4x2] pred1 ... VIIRS B15-B16 BTs pred2, pred3 ... V/C Band 15 and Band 16 OBT-FUSION BTD, respectively pred 4 ... VIIRS satellite zenith angle

Case study (mostly over ocean) on 4/17/2015

MODIS granule: at 1435 UTC VIIRS granules: at 1436 and 1442 UTC

Space Science and Engineering Center University of Wisconsin-Madison

Space Science and Engineering Center University of Wisconsin-Madison

Predictor 1

VIIRS M15 – M16 BT Diff [K]

MODIS B31 – B32 BT Diff [K]

Space Science and Engineering Center University of Wisconsin-Madison

Predictor 2 & 3

*This data includes the FSNRAD product files.

Space Science and Engineering Center University of Wisconsin-Madison

Band 31 MODIS/AIRS and VIIRS/CrIS Fusion OBT-FBT [K]

VIIRS/CrIS OBT-FBT [K]

B15 original OBT-FBT [K], 2015107.1436,1442

mean/stdev/rms: 0.02/1.13/1.13

Estimated O-F BTs

Space Science and Engineering Center University of Wisconsin-Madison

Band 27 MODIS/AIRS and VIIRS/CrIS Fusion OBT-FBT [K]

MODIS/AIRS OBT-FBT [K]

Full granule

Subset

O-F BTs

Original **O-F BTs**

Band 33 MODIS/AIRS and VIIRS/CrIS Fusion OBT-FBT [K]

MODIS/AIRS OBT-FBT [K]

Full granule

Subset

O-F BTs

Original **O-F BTs**

Band 34 MODIS/AIRS and VIIRS/CrIS Fusion OBT-FBT [K]

VIIRS/CrIS OBT-FBT [K] V/C Fusion B34 OBT-FBT Diffs [K], 2015107.1436,1442 mean/stdev/rms: -0.17/0.61/0.64 3 2 1 0 -1 -2 -3 V/C Fusion B34 OBT-FBT Diffs [K], 2015107.1436,1442 mean/stdev/rms: -0.17/0.61/0.64 3

Full granule

2

1

0

-1

-2

MODIS/AIRS OBT-FBT [K]

Original O-F BTs

Estimated

O-F BTs

Band 36 MODIS/AIRS and VIIRS/CrIS Fusion OBT-FBT [K]

MODIS/AIRS OBT-FBT [K]

Full granule

CERES STM. May 14-16, 2024

O-F BTs

Original **O-F BTs**

> Space Science and Engineering Center University of Wisconsin-Madison

Comparison of the MODIS and VIIRS Split Window Band Differences

Compute global statistics from convolved (1) AIRS to MODIS and (2) AIRS to VIIRS split-window band differences for every FOV in every granule on 04/17/2015

Space Science and Engineering Center University of Wisconsin-Madison

AIRS convolved to MODIS B31-B32 BTD (mean, stdev, rms=0.779, 0.950, 1.228 K)

Space Science and Engineering Center University of Wisconsin-Madison

AIRS convolved VIIRS B15-B16 BTD (mean, stdev, rms=0.957, 1.036, 1.411 K)

Space Science and Engineering Center University of Wisconsin-Madison

Differences of AIRS/MODIS minus AIRS/VIIRS BT Differences

Global Statistics (240 AIRS granules) of BTD [K]

	mean	stdev	rms
MODIS B31-B32 BTD	0.779	0.950	1.228
VIIRS M15-M16 BTD	0.957	1.036	1.411

Blue (negative values) → VIIRS split-window BTD are larger → offer increased atmospheric signal due to wider SRFs

CERES STM. May 14-16. 2024

Space Science and Engineering Center University of Wisconsin-Madison

Future Plans

- Continue to maintain the NOAA-20 and S-NPP FSNRAD products
- Document Single-FOV uncertainty estimate in FSNRAD V2 ATBD and the undergoing FSNRAD V2 publication.
- Add pixel-level uncertainty estimates for each band to future versions of product files.
- Testing out the possible use of NOAA-20/CrIS for patching up missing S-NPP FSNRAD bands during the CrIS Side 1&2 MW/LW failing and restoring periods
- Possible study to create high-resolution CERES OLR data
 - [VIIRS Split Window+VIIRS/CrIS fusion]/[CERES OLR] product fusion using the FSNRAD 14.4, 13.3, 8.2, and 6.7 mµ channels respectively (Lee et al., 2007) in the k-d tree search produces CERES OLR at VIIRS spatial resolution
 - Lee, H., A. Gruber, R. G. Ellingson, and I. Laszlo, 2007: Development of the HIRS Outgoing Longwave Radiation Climate Dataset. *J. Atmos. Oceanic Technol.*, 24, 2029–2047, <u>https://doi.org/10.1175/2007JTECHA989.1</u>.

References:

- Foster, M. J., C. Phillips, A. K. Heidinger, E. E. Borbas, Y. Li, W. P. Menzel, A. Walther, and E. Weisz, 2023: PATMOS-x Version 6.0: 40 Years of Merged AVHRR and HIRS Global Cloud Data. J. Climate, 36, 1143–1160, <u>https://doi.org/10.1175/JCLI-D-22-0147.1</u>
- Weisz, E. and W. P Menzel, **2022**: Tracking atmospheric moisture changes in convective storm environments using GEO ABI and LEO CrIS data fusion. (Rem. Sens. Env. 14(21), 5327; <u>https://doi.org/10.3390/rs14215327</u>
- Weisz, E. and W. P Menzel, 2022: Monitoring the 2021 Cumbre Vieja Volcanic Eruption Using Satellite Multi-Sensor Data Fusion. (Jour. of Geophys. Res. Atmos., 128, e2022JD037926. <u>https://doi.org/10.1029/2022JD037926</u>
- Borbas, E. E., E. Weisz, C. Moeller, W. P. Menzel, and B. A. Baum, 2021: Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion, *Atmospheric Measurement Techniques*, 14, 1191–1203, <u>https://doi.org/10.5194/amt-14-1191-2021</u>
- Smith Sr, William & Zhang, Qi & Shao, M. & Weisz, E.. 2020. Improved Severe Weather Forecasts Using LEO and GEO Satellite Soundings. Journal of Atmospheric and Oceanic Technology. 37. <u>http://doi.org/10.1175/JTECH-D-19-0158.1</u>
- Weisz, E., and W. P. Menzel, **2020**: An Approach to Enhance Trace Gas Determinations through Multi-Satellite Data Fusion, J. Appl. Remote Sens., 14(4), 044519, <u>http://doi.org/10.1117/1.JRS.14.044519</u>
- Anheuser, J., E. Weisz, and W. P. Menzel, 2020: Low earth orbit sounder retrieval products at geostationary earth orbit spatial and temporal scales, J. Appl. Remote Sens. 14(4), 048502, <u>http://doi.org/10.1117/1.JRS.14.048502</u>
- Li, Y., B. A. Baum, A. K. Heidinger, W. P. Menzel, and E. Weisz, 2020: Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS-CrIS data fusion, *Atmospheric Measurement Techniques*, 13, 4035–4049, <u>https://doi.org/10.5194/amt-13-4035-2020</u>
- Weisz, E., and W. P. Menzel, **2020**: An Approach to Enhance Trace Gas Determinations through Multi-Satellite Data Fusion, *J. Appl. Remote Sens.*, 14(4), 044519 (2020), <u>http://doi.org/10.1117/1.JRS.14.044519</u>
- Weisz, E., and W. P. Menzel, **2019**: Imager and sounder data fusion to generate sounder retrieval products at an improved spatial and temporal resolution, J. Appl. Remote Sens. 13(3), 034506, <u>http://doi.org/10.1117/1.JRS.13.034506</u>
- Weisz, E., B. A. Baum, and W. P. Menzel, **2017**: Fusion of satellite-based imager and sounder data to construct supplementary high spatial resolution narrowband IR radiances. J. Appl. Remote Sens. 11(3), 036022, <u>http://doi.org/10.1117/1.JRS.11.036022</u>

The End

Space Science and Engineering Center University of Wisconsin-Madison

Cloud Application

(Li et al. 2020) used the 6.7 and 13.3 µm CrIS+VIIRS fusion bands in CLAVR-X, the NOAA operational cloud processing package. They demonstrated that the fusion radiancies improved cloud parameters, *like cloud* mask (polar regions), type/phase, and cloud height for all latitudes.

Bias distribution of cloud top height of ice phase clouds between S-NPP VIIRS and CALIPSO/CALIOP for emissivity range a) 0 to 0.4; b) 0.4 to 0.8; c) 0.8 to 1.0; and d) 0 to 1.0. Solid and dashed lines indicate data with/without fusion channels.

Significant improvement is found for all ice cloud emissivities but especially for semitransparent ice clouds, when the spectral information is used what the FUSION products provide.

(Li et al., 2020)

Case study (over land) on 4/17/2015

MODIS granule: at 0805 UTC VIIRS granules: at 0754 and 0800 UTC

Space Science and Engineering Center University of Wisconsin-Madison

Space Science and Engineering Center University of Wisconsin-Madison

Predictor 1

VIIRS M15 – M16 BT Diff [K]

MODIS B31 – B32 BT Diff [K]

Space Science and Engineering Center University of Wisconsin-Madison

Predictor 2 & 3

*This data includes the FSNRAD product files.

Space Science and Engineering Center University of Wisconsin-Madison

Band 27 MODIS/AIRS and VIIRS/CrIS Fusion OBT-FBT [K]

Full granule

Subset

O-F BTs

Original

O-F BTs

Space Science and Engineering Center University of Wisconsin-Madison

Band 33 MODIS/AIRS and VIIRS/CrIS Fusion OBT-FBT [K]

Full granule

O-F BTs

Original

O-F BTs

Band 36 MODIS/AIRS and VIIRS/CrIS Fusion OBT-FBT [K]

Space Science and Engineering Center

University of Wisconsin-Madison

CERES STM. May 14-16, 2024

Full granule

Subset