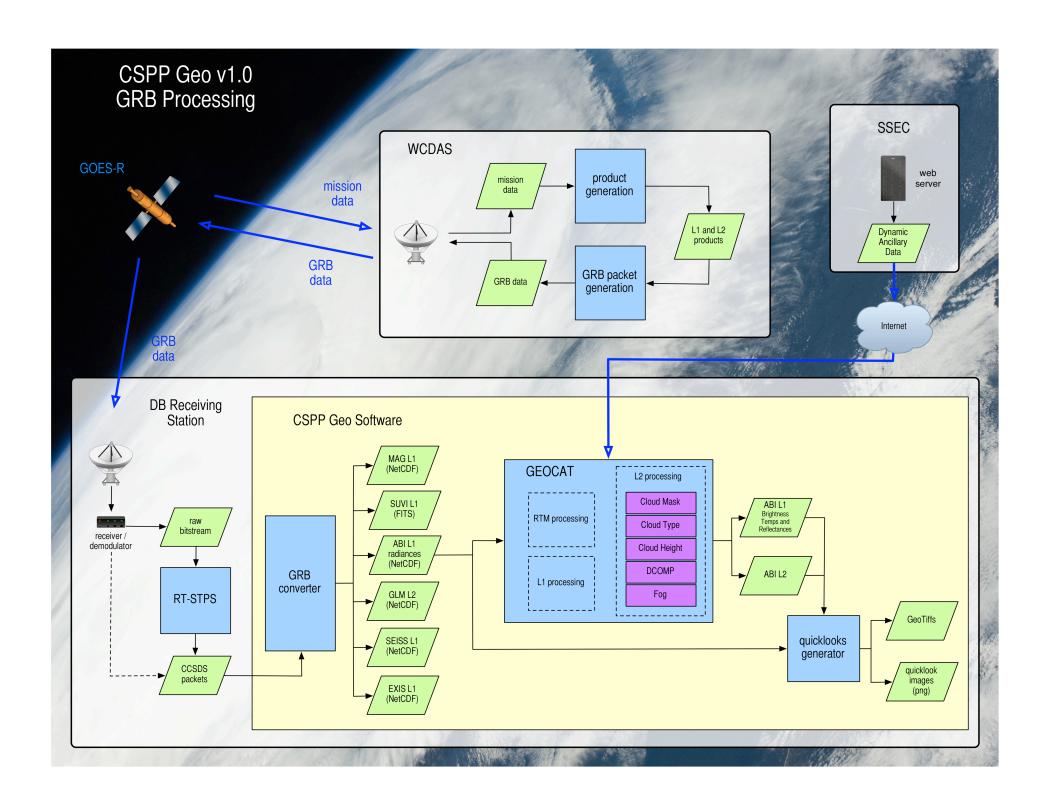
CSPP Geo Overview, Status & Plans

Graeme Martin & Liam Gumley
Oct 16, 2014

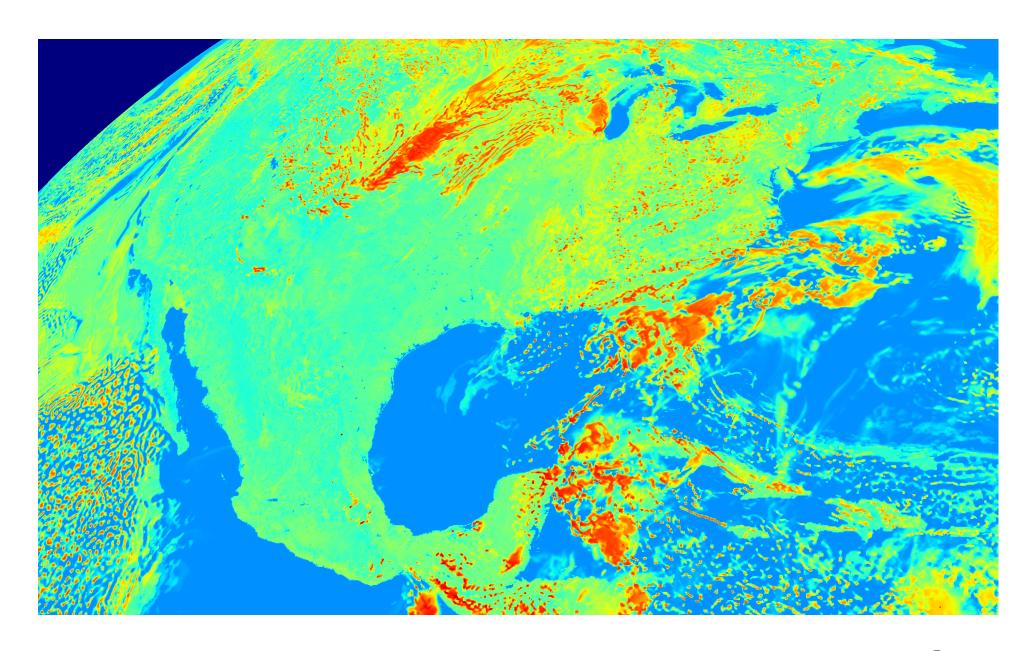
GOES ReBroadcast (GRB)

- GOES-R will have a Direct Broadcast stream, similar to current GOES, called GRB
- Will include data from all GOES-R instruments
 - Advanced Baseline Imager (ABI)
 - Geostationary Lightning Mapper (GLM)
 - Extreme Ultra Violet X-Ray Irradiance Sensor (EXIS)
 - Magnetometer (MAG)
 - Space Environmental In-Situ Suite (SEISS)
 - Solar Ultra Violet Imager (SUVI)
- Level 2 data for GLM, Level 1 for all other instruments
- Data flow
 - Mission data received at Wallops
 - Processed to L1 or L2
 - Packed into CCSDS packets
 - GRB stream is bounced off GOES-R satellite
 - Received at DB stations
- GRB can be received by anyone with the right hardware who can see GOES-R
- More information on the NOAA GRB web site
 - http://www.goes-r.gov/users/grb.html


CSPP Geo

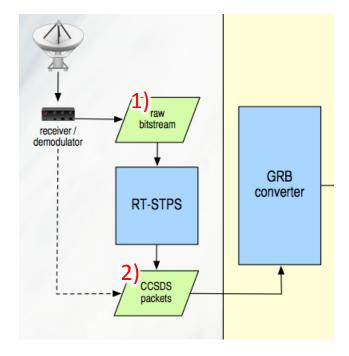
NOAA has funded the CSPP Geo project to develop a software package that will allow DB users to process GRB data received on their antennas

- Two main tasks
 - Unpack GRB data and reconstruct L1 or L2 (GLM) datasets for <u>all</u> GOES-R instruments
 - Process L1 <u>ABI</u> data to produce L2 geophysical products
- Will also support
 - Current GOES
 - Himawari AHI
- Software development on all three tracks (GRB, current GOES, AHI) will occur in parallel
- Will coordinate with vendors of GRB receiving systems on upstream data interface
- CSPP / IMAPP model of software development & distribution
 - User-centric approach
 - Easy to install and run
 - Should run on relatively modest hardware
 - Free to use
 - Re-use or adapt existing software where possible
- Software will be distributed as pre-built binaries for Linux (CentOS 6, 64-bit)
 - Source will be included if possible


GRB ingest and reconstruction

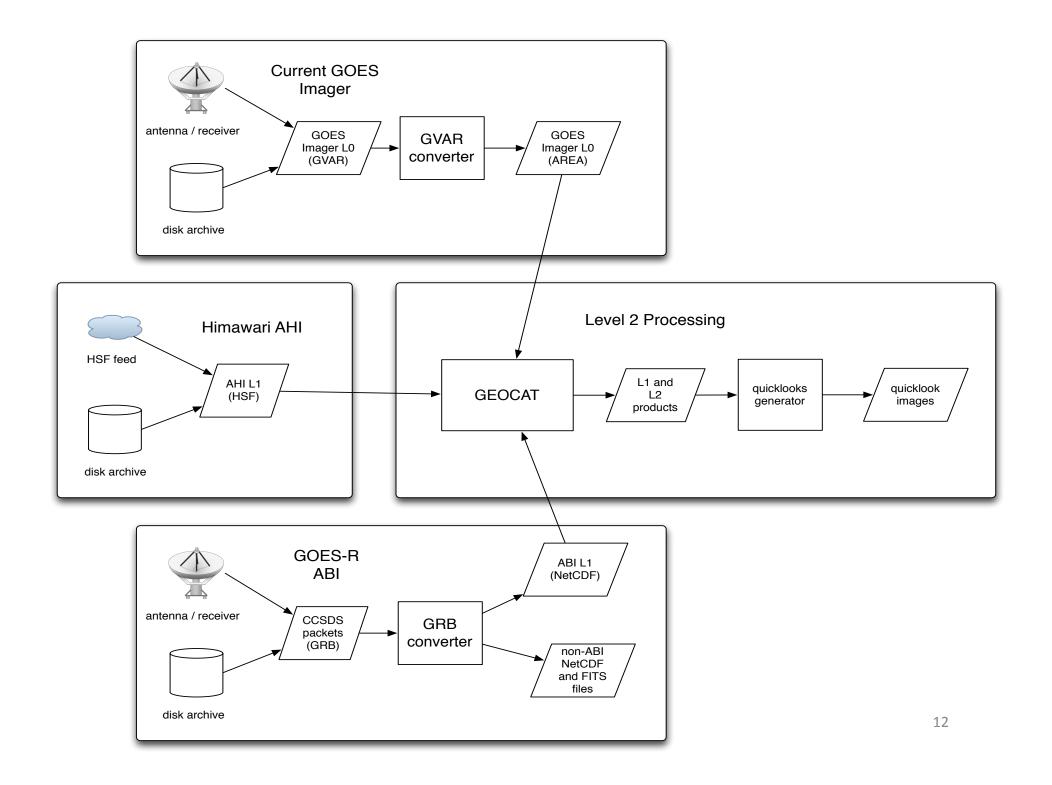
- Raw bitstream may be handled by RT-STPS software (NASA)
 - Output will be files containing CCSDS packets
 - Vendors may want to use their own software
- Developing new software to reconstruct the GRB data and metadata
 - Parse CCSDS packets and recover payloads
 - Reconstruct data fragments
 - Decompress
 - Piece together
 - Write output
- Format of GRB data and unpacking procedure is described in the PUG
 - Data specification for each instrument
 - Time granulation of point datasets
 - Nominal schedule / refresh rate
 - File formats / NCML
- Output will be mission-standard NetCDF files, except SUVI will be FITS
- Parallelization will likely be required
- Have simulated GRB data obtained from GRB simulator
 - Includes ABI data from proxy team and other datasets

Status – GRB ingest and reconstruction


- Recovered test data from the GRB simulator
- Processed raw data files with modified version of RT-STPS
 - 32-bit frame header needed to be removed
 - Output is files containing only CCSDS packets, sorted by APID
- Reconstructed a CONUS image and DQF image from a test case
 - JPEG-2000 compression
 - All image data was in a single image fragment
 - Not consistent with the PUG in all aspects
- Will look at other test data recovered from GRB simulator
- Have requested the simulator again in Jan 2015

CSPP Geo upstream interface

- Currently being discussed but not yet decided
- Two possible interfaces, may support one or both
 - 1) Read raw bitstream via a socket
 - 2) Read data from files containing only CCSDS packets
- Bit-stream interface specification should be consistent with
 - PUG
 - GRB simulator, but simulator may be configurable, and may contradict PUG
 - Operational data stream (most important)
- File-based interface
 - Files contain only CCSDS packets, no network frames or other metadata
 - What grouping? By APID, and maybe by image block or fragment
 - Upstream software should not have to look too deeply into packets
- Plan to circulate interface specification
 - Want feedback from vendors



L2 processing

- Will release algorithms that are most useful to DB users
 - Users will include NWS, international DB community
- Leverage GEOstationary Cloud Algorithm Testbed (Geocat)
 - Developed jointly by NOAA / SSEC for GOES-R algorithm development
 - Research versions of many AWG algorithms run in Geocat
- Advantages of using Geocat
 - Geocat is portable and robust, well-tested
 - AWG algorithm code is high-quality and well-tested
 - Can integrate and release algorithm updates
- Version 1: Geocat with AWG cloud / fog algorithms
- Will expand to include additional algorithms:
 - Low-hanging fruit is algorithms that are in Geocat
 - May expand in later releases to include other processing systems, e.g. CLAVR-X, AIT framework, standalone programs
- Not planning or budgeted to develop new science algorithms or software
 - CSPP strategy has been to adapt or encapsulate existing software for DB use

Products currently produced

product	algorithm	maintainer
0.65 um reflectance	geocat L1	G Martin
3.9 um reflectance	geocat L1	G Martin
3.9 um brightness temperature	geocat L1	G Martin
6.7 um brightness temperature	geocat L1	G Martin
11.0 um brightness temperature	geocat L1	G Martin
13.3 um brightness temperature	geocat L1	G Martin
Cloud mask	Cloud mask	A Heidinger
Cloud phase	Cloud type	M Pavolonis
Cloud type	Cloud type	M Pavolonis
Cloud top height	Cloud height	A Heidinger
Cloud top temperature	Cloud height	A Heidinger
Cloud top pressure	Cloud height	A Heidinger
Cloud 11 um emissivity	Cloud height	A Heidinger
Cloud visible optical depth	DCOMP	A Walther
Cloud effective radius	DCOMP	A Walther
Cloud liquid water path	DCOMP	A Walther
Cloud ice water path	DCOMP	A Walther
Probability of Marginal Visual Flight Rules (MVFR)	Fog	M Pavolonis
Probability of Instrument Flight Rules (IFR)	Fog	M Pavolonis
Probability of Low Instrument Flight Rules (LIFR)	Fog	M Pavolonis
Low cloud geometric thickness	Fog	M Pavolonis

Current GOES - beta release

- Beta release for current GOES processing
 - Released May 2014
 - Runs on a canned GOES-15 GVAR dataset only, from SSEC ingestor
 - Includes standalone software to convert GVAR to AREA files, developed by Scott Mindock from MCIDAS codebase
 - Cloud and low cloud / fog algorithms running in Geocat
 - Binaries only, built for 64-bit RHEL-compatible Linux
 - Package includes all required third-party software;
 easy to install and run

Current GOES - public release

- First public release for current GOES processing
 - Planned for Fall / Winter 2014
 - Users will be able to process data in realtime received at their antennas
 - Will run on GOES-13 and GOES-15
 - GVAR converter improvements vendor support?
 - Intermediate AREA files
 - Remapped to common GRID
 - Dynamic ancillary data downloaded from SSEC server
 - Robust scripting infrastructure for job sequencing, ancillary download, error reporting, logging, etc.
 - Quicklooks
 - Working with science teams to integrate L2 algorithm updates and verify output
 - Plan to add Night-time Cloud Optical and Microphysical Properties (NCOMP)
 - Testing: different instruments, scan sectors, image times & sequences

Himawari AHI

- Plan to add support for AHI as a pathfinder for ABI (2015)
 - AHI offers an early opportunity to test software on an instrument that is almost identical to ABI
 - Geocat will support AHI sooner (Fall 2014)
 - Algorithms may need to be adapted for AHI, LUTs generated, etc.
 - One channel different from ABI
 - Interested in knowing algorithm developers plans or interest in processing AHI
- Data format will be HSF
 - HSF ingest library already exists (contact Ray Garcia)
 - HSF data will be obtained from JMA via STAR
 - May also support legacy HRIT for DB users if requested

Challenges

- Have to keep up with a data rate of ~31 Mbps
 - 15x current GOES rate
 - Can parallelize both GRB conversion and L2 processing
- L2 system design and parallelization is complicated by:
 - Inter-algorithm dependencies
 - Spatial dependencies (algs that require surrounding pixels)
 - Temporal dependencies (algs that require products from previous or subsequent timesteps)
- Some users have limited bandwidth for ancillary downloads
 - Requires balancing algorithm needs vs user needs
- Want to support "streaming" processing mode
 - E.g. allow image segment to be served via ADDE as they become available
- Will operational data look like simulator data?
- PUG is a work in progress and contains TBDs

Current Best-Estimate Schedule

- Fall / Winter 2014: Initial public release with support for GOES-13 and GOES-15
 - Produces L2 cloud and fog products
- Spring 2014: add support for GRB
 - Level 1 ABI and Level 2 GLM
 - Produces L2 cloud and fog products
- Summer 2015: add support for Himawari-8
- Summer / Fall 2015: add support for remaining GOES-R instruments
- Late 2015 and onward: add L2 science products

Questions?